Tensorflow2.10 完成图像分割任务

前言

图像分割在医学成像、自动驾驶汽车和卫星成像等方面有很多应用,本质其实就是图像像素分类任务,也就是使用深度学习模型为输入图像的每个像素分配一个标签(或类)。

准备

本文的准备如下,使用 pip 安装如下配置:

  • pip install tensorflow == 2.10.1
  • pip install tensorflow_datasets == 4.7.8
  • pip install ipython == 8.6.0
  • pip install matplotlib == 3.6.2

大纲

  1. 获取数据
  2. 处理数据
  3. 搭建模型
  4. 编译、训练模型
  5. 预测

实现

1. 获取数据

(1)本文使用的数据集是 Oxford-IIIT Pet Dataset ,该数据集由 37 类宠物的图像组成,每个品种有 200 个图像(训练集和测试集各有 100 个),每个像素都会被划入以下三个类别之一:

  • 属于宠物的像素
  • 宠物边缘的像素
  • 其他位置的像素

(2)可以使用 TensorFlow 的内置函数从网络上下载本次使用的数据 oxford_iiit_pet ,一般会下载到本地目录 :C:\Users\【用户目录】\tensorflow_datasets\oxford_iiit_pet 。

(3)dataset 中存放是训练集和测试集这两个数据集,info 中存放的是该数据的基本信息,如文件大小,数据介绍等基本信息。

import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow_examples.models.pix2pix import pix2pix
from IPython.display import clear_output
import matplotlib.pyplot as plt
dataset, info = tfds.load('oxford_iiit_pet:3.*.*', with_info=True)

2. 处理数据

(1)normalize 函数主要是完成将图像颜色值被归一化到 [0,1] 范围,掩码像素的所属标签被标记为 {1, 2, 3}。为了方便后面的模型计算,将它们分别减去 1,得到的标签为:{0, 1, 2} 。

(2)load_image 函数主要是将每个图片的输入和掩码图片,使用指定的方法将其大小调整为指定的 128x128 。

(3)从 dataset 中分理处训练集 train_images 和测试集 test_images 。

def normalize(input_image, input_mask):
    input_image = tf.cast(input_image, tf.float32) / 255.0
    input_mask -= 1
    return input_image, input_mask

def load_image(image):
    input_image = tf.image.resize(image['image'], (128, 128))
    input_mask = tf.image.resize(image['segmentation_mask'], (128, 128))
    input_image, input_mask = normalize(input_image, input_mask)
    return input_image, input_mask

train_images = dataset['train'].map(load_image, num_parallel_calls=tf.data.AUTOTUNE)
test_images = dataset['test'].map(load_image, num_parallel_calls=tf.data.AUTOTUNE)

(4)为了保证在加载数据的时候不会出现 I/O 不会阻塞,我们在从磁盘加载完数据之后,使用 cache 会将数据保存在内存中,确保在训练模型过程中数据的获取不会成为训练速度的瓶颈。如果说要保存的数据量太大,可以使用 cache 创建磁盘缓存提高数据的读取效率。另外我们还使用 prefetch 在训练过程中可以并行执行数据的预获取。

TRAIN_LENGTH = info.splits['train'].num_examples
BATCH_SIZE = 32
BUFFER_SIZE = 1000
train_batches = (train_images.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat().prefetch(buffer_size=tf.data.AUTOTUNE))
test_batches = test_images.batch(BATCH_SIZE)

(5)这里的 display 函数主要是将每个样本的宠物图像、对应的掩码图像、预测的掩码图像绘制出来,在这里我们只随机挑选了一个样本进行显示。因为这里还没有预测的掩码图像,所以没有将其绘制出来。

(6)我们可以看到左侧是一张宠物的生活照,右边是一张该宠物在照片中的轮廓线图,宠物的样子所处的像素为紫色,宠物的轮廓边缘线的像素是黄色,背景的像素是墨绿色,这其实对应了图片中的像素会分成三个类别。

def display(display_list):
    plt.figure(figsize=(15, 15))
    title = ['Input Image', 'True Mask', 'Predicted Mask']
    for i in range(len(display_list)):
        plt.subplot(1, len(display_list), i+1)
        plt.title(title[i])
        plt.imshow(tf.keras.utils.array_to_img(display_list[i]))
        plt.axis('off')
    plt.show()

for images, masks in train_batches.take(1):
    sample_image, sample_mask = images[0], masks[0]
    display([sample_image, sample_mask])
    

图像分割样例展示.png

3. 搭建模型

(1)这里使用的模型是修改后的 U-Net ,U-Net 由编码器(下采样器)和解码器(上采样器)组成。为了学习稳健的特征并减少可训练参数的数量,请使用预训练模型 MobileNetV2 作为编码器。对于解码器,您将使用上采样块,该块已在 TensorFlow Examples 仓库的 pix2pix 示例中实现。

(2)如前所述,编码器是一个预训练的 MobileNetV2 模型。您将使用来自 tf.keras.applications 的模型。编码器由模型中中间层的特定输出组成。请注意,在训练过程中不会训练编码器。

(3)我们这里使用模型由两部分组成, 一个是编码器 down_stack(也就是下采样器),另一个是解码器 up_stack (也就是上采样器)。我们这里使用预训练的模型 MobileNetV2 作为编码器, MobileNetV2 模型可以直接从网络上下载到本地使用,使用它来进行图片的特征抽取,需要注意的是我们这里选取了模型中的若干中间层,将其作为模型的输出,而且在训练过程中我们设置了不会去训练编码器模型中的权重。对于解码器,我们使用已经在仓库实现了的 pix2pix 。

(4)我们的 U-Net 网络接收的每张图片大小为 [128, 128, 3] ,先通过模型进行下采样,然后计算上采样和 skip 的特征连接,最后经过一层 Conv2DTranspose 输出一个大小为 [batch_size, 128, 128, 3] 的向量结果。

base_model = tf.keras.applications.MobileNetV2(input_shape=[128, 128, 3], include_top=False)
layer_names = [ 'block_1_expand_relu', 'block_3_expand_relu', 'block_6_expand_relu', 'block_13_expand_relu', 'block_16_project']
base_model_outputs = [base_model.get_layer(name).output for name in layer_names]
down_stack = tf.keras.Model(inputs=base_model.input, outputs=base_model_outputs)
down_stack.trainable = False
up_stack = [  pix2pix.upsample(512, 3),  pix2pix.upsample(256, 3),   pix2pix.upsample(128, 3),   pix2pix.upsample(64, 3)]

def unet_model(output_channels:int):
    inputs = tf.keras.layers.Input(shape=[128, 128, 3])
    skips = down_stack(inputs)
    x = skips[-1]
    skips = reversed(skips[:-1])
    for up, skip in zip(up_stack, skips):
        x = up(x)
        concat = tf.keras.layers.Concatenate()
        x = concat([x, skip])
    last = tf.keras.layers.Conv2DTranspose( filters=output_channels, kernel_size=3, strides=2, padding='same')   
    x = last(x)
    return tf.keras.Model(inputs=inputs, outputs=x)

4. 编译、训练模型

(1)因为每个像素面临的是一个多类分类问题,所以我们使用 SparseCategoricalCrossentropy 作为损失函数,计算多分类问题的交叉熵,并将 from_logits 参数设置为 True,因为标签是用 0、1、2 三个整数表示。SparseCategoricalCrossentropy 函数中当 from_logits=true 时,会先对预测值进行 Softmax 概率化,就无须在模型最后添加 Softmax 层,我们只需要使用经过 Softmax 输出的小数和真实整数标签来计算损失即可。reduction 默认设置为 auto 时,会对一个 batch 的样本损失值求平均。

举例:

y_true = [0,1,2]
y_pred = [[0.2,0.5,0.3],[0.6,0.1,0.3],[0.4,0.4,0.2]]
使用函数结果:
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False,name='sparse_categorical_crossentropy')
loss_val = loss_fn(y_true,y_pred).numpy()
loss_val
1.840487

手动计算 SparseCategoricalCrossentropy 结果:
(-np.log(0.2)-np.log(0.1)-np.log(0.2))/3
 1.8404869726207487

(2)使用 Adam 作为优化器,使用 accuracy 作为评估指标。

OUTPUT_CLASSES = 3
EPOCHS = 20
VAL_SUBSPLITS = 5
STEPS_PER_EPOCH = TRAIN_LENGTH // BATCH_SIZE
VALIDATION_STEPS = info.splits['test'].num_examples//BATCH_SIZE//VAL_SUBSPLITS

model = unet_model(output_channels=OUTPUT_CLASSES)
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),  metrics=['accuracy'])
model_history = model.fit(train_batches, epochs=EPOCHS, steps_per_epoch=STEPS_PER_EPOCH, validation_steps=VALIDATION_STEPS, validation_data=test_batches)

训练结果输出:

115/115 [==============================] - 110s 961ms/step - loss: 0.1126 - accuracy: 0.9473 - val_loss: 0.3694 - val_accuracy: 0.8897

5. 预测

(1)使用 create_mask 我们会将对该批次的第一张图片的预测掩码图像进行展示,结果是一个大小为 (128, 128, 1) 的向量,其实就是给出了该图片每个像素点的预测标签。

(2)在这里我们使用了上面的一个样本 sample_image ,使用训练好的模型进行预测,因为这里的样本 sample_image 是的大小是 (128, 128, 3) ,我们的模型需要加入 batch_size 维度,所以在第一维扩展了一个维度,大小变为 (1, 128, 128, 3) 才能输入模型。

(3)从绘制的预测掩码图像结果看,预测宠物边界线已经相当清晰了,如果进一步调整模型结果和训练的迭代次数,效果会更加好。

def create_mask(pred_mask):
    pred_mask = tf.math.argmax(pred_mask, axis=-1)
    pred_mask = pred_mask[..., tf.newaxis]
    return pred_mask[0]

display([sample_image, sample_mask,  create_mask(model.predict(sample_image[tf.newaxis, ...]))])

图像分割样例预测.png

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/698659.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

动态内存管理<C语言>

导言 在C语言学习阶段,指针、结构体和动态内存管理,是后期学习数据结构的最重要的三大知识模块,也是C语言比较难的知识模块,但是“天下无难事”,只要认真踏实的学习,也能解决,所以下文将介绍动态…

成都石室中学学子游汶鑫展现新时代好少年风采 拾金不昧获表彰

在繁华的都市中,每天都有无数的故事在上演,而其中的一些故事,却以其独特的温暖和正能量,深深打动着我们的心灵。近日,成都石室中学初中学校的一名学生游汶鑫同学,就用他的实际行动,诠释了新时代好少年的风采,展现了中华民族传统美德在当代青少年身上的生动体现。 成都石室中学初…

# Mac下反编译微信小程序获得源码

Mac下反编译微信小程序获得源码 所需工具 mac版微信 最好3.8以上版本node环境wxappUnpacker wxappUnpacker: 小程序反编译(支持分包) 小程序反编译(支持分包) https://gitee.com/ksd/wxappUnpacker 大体步骤 用微信搜索打开对应小程序,为的是把产物文件加载到…

郑州小区火灾防范需重视:可燃气体报警器检测的日常管理与维护

近日,郑州市一小区发生了一起严重的火灾事故,这起事故不仅给遇难者家属带来了巨大悲痛,也再次引发了社会对于小区火灾防范与应急处理的关注。 在对此次事故进行深入分析的同时,我们不得不思考可燃气体报警器在小区火灾检测中的重…

选课清单--数据结构课程设计(十字链表+哈希表实现)

题目如上(九院版,被老师要求选这个题目做,不知道还有没有别的学校是这种题目,都可以相互借鉴hh) 代码写的有冗余,结构体应该有三个,一个学生,一个课程,一个十字链表的结构体,如果公…

如何有效处理服务器后台密码暴露

服务器后台密码的暴露是信息安全领域中的严重事件,它可能引发未经授权的数据访问、恶意软件植入或系统功能滥用等一系列问题。本文将探讨几种处理服务器后台密码暴露的有效策略,包括紧急响应步骤、密码安全增强措施及长期预防机制,并提供实际…

【LeetCode 第 401 场周赛】K秒后第 N 个元素的值

文章目录 1. K秒后第 N 个元素的值🆗 1. K秒后第 N 个元素的值🆗 题目链接🔗 🐧解题思路: 前缀和 小规律🍎 🍎 从上图观察可知,规律一目了然,arr[i] arr[i] 对上一…

【机器学习】基于3D CNN通过CT图像分类预测肺炎

1. 引言 1.1. 研究背景 在医学诊断中,医生通过分析CT影像来预测疾病时,面临一些挑战和局限性: 图像信息的广度与复杂性: CT扫描生成的大量图像对医生来说既是信息的宝库也是处理上的负担。每组CT数据可能包含数百张切片&#xf…

代码随想录算法训练营第36期DAY57

DAY57 今天的好消息&#xff1a;能去华五。 1143最长公共子序列 Code: class Solution {public: int longestCommonSubsequence(string text1, string text2) { vector<vector<int>> dp(text1.size()1,vector<int>(text2.size()1,0)); f…

【PowerDesigner】CDM生成PDM

目录 &#x1f30a;1. PowerDesigner简介 &#x1f30d;1.1 常用模型文件 &#x1f30d;1.2 PowerDesigner使用环境 &#x1f30a;2. CDM生成PDM ​​​​​​​&#x1f30a;3. 研究心得 &#x1f30a;1. PowerDesigner简介 &#x1f30d;1.1 常用模型文件 主要使用Pow…

家具板材ENF级甲醛释放量检测 板材甲醛含量测定

ENF级甲醛释放量检测 ENF级是指甲醛释放量非常低的板材&#xff0c;它代表了无醛添加的最高级别。根据最新的国家标准GB/T 39600-2021&#xff0c;ENF级板材的甲醛释放量不得超过0.025 mg/m。这个标准比欧洲的E1级&#xff08;甲醛释放量≤0.124 mg/m&#xff09;和美国的P2标准…

2024年,计算机相关专业还值得选择

随着2024年高考落幕&#xff0c;数百万高三学生又将面临人生中的重要抉择&#xff1a;选择大学专业。在这个关键节点&#xff0c;计算机相关专业是否仍是“万金油”的选择&#xff1f;在过去很长一段时间里&#xff0c;计算机科学与技术、人工智能、网络安全、软件工程等专业一…

移动端浏览器的扫描二维码实现(vue-qrcode-reader与jsQR方式)

1. 实现功能 类似扫一扫的功能&#xff0c;自动识别到画面中的二维码并进行识别&#xff0c;也可以选择从相册中上传。 2. 涉及到的一些插件介绍 vue-qrcode-reader 一组用于检测和解码二维码的Vue.js组件 jsQR 一个纯粹的javascript二维码阅读库&#xff0c;该库接收原始…

使用 3D 图形 API 在 C# 中将 PLY 转换为 OBJ

OBJ和PLY是一些广泛使用的 3D 文件格式&#xff0c;易于编写和读取。这篇博文演示了如何以编程方式在 C# 中将 PLY 转换为 OBJ。此外&#xff0c;它还介绍了一种用于 3D 文件格式转换的在线3D 转换器。是的&#xff0c;Aspose.3D for .NET为程序员和非程序员提供了此功能来执行…

MTK烧录USB驱动下载

下载链接 https://www.catalog.update.microsoft.com/Search.aspx?qMediaTek%20USB%20Port 驱动安装教程 https://miuiver.com/install-official-mediatek-driver/

交友系统定制版源码 相亲交友小程序源码全开源可二开 打造独特的社交交友系统

交友系统源码的实现涉及到多个方面&#xff0c;包括前端页面设计、后端逻辑处理、数据库设计以及用户交互等。以下是一个简单的交友系统源码实现的基本框架和关键步骤: 1.数据库设计:用户表:存储用户基本信息&#xff0c;如用户ID、用户名、密码、头像、性别、年龄、地理位置…

SpringCloud 前端-网关-微服务-微服务间实现信息共享传递

目录 1 网关获取用户校验信息并保存至请求头&#xff08;前端-网关&#xff09; 2 微服务获取网关中的用户校验信息&#xff08;网关-微服务&#xff09; 2.1 一般的做法是在公共的module中添加&#xff0c;此处示例为common 公共配置module中添加 2.2 定义拦截器 2.3 定义…

什么是微控制器中的欠压复位?如何防止误断电

微控制器的“掉电”是指电源电压部分暂时降低到可靠运行所需的水平以下。许多微控制器都有一个保护电路&#xff0c;可以检测电源电压何时低于此水平&#xff0c;并将设备置于复位状态&#xff0c;以确保电源恢复时正确启动。此操作称为“欠压复位”或 BOR。类似的功能称为低电…

数据不归路?文件清理的后悔药,2个文件恢复技巧

手机已成为我们生活中不可或缺的重要工具&#xff0c;它不仅仅是一个通讯设备&#xff0c;更是我们存储个人信息、工作文件、照片和视频等宝贵资料的仓库。然而&#xff0c;生活中的意外总是难以预料&#xff0c;有时候我们可能会不小心删除重要的文件&#xff0c;或者因为手机…

JVS规则引擎实战:如何轻松接入本地数据库数据

在当今数据驱动的时代&#xff0c;有效地接入和利用各种数据源是企业和组织实现智能化、自动化决策的关键。JVS-RULES通过支持多种数据形态&#xff0c;为用户提供了一个统一的数据接入平台&#xff0c;使不同来源的数据能够被整合并用于规则判断。接下来我给大家详细介绍如何通…