通过 CartPole 游戏详细说明 PPO 优化过程

CartPole 介绍

在一个光滑的轨道上有个推车,杆子垂直微置在推车上,随时有倒的风险。系统每次对推车施加向左或者向右的力,但我们的目标是让杆子保持直立。杆子保持直立的每个时间单位都会获得 +1 的奖励。但是当杆子与垂直方向成 15 度以上的位置,或者推车偏离中心点超过 2.4 个单位后,这一轮局游戏结束。因此我们可以获得的最高回报等于 200 。我们这里就是要通过使用 PPO 算法来训练一个强化学习模型 actor-critic ,通过对比模型训练前后的游戏运行 gif 图,可以看出来我们训练好的模型能长时间保持杆子处于垂直状态。

库准备

python==3.10.9
tensorflow-gpu==2.10.0
imageio==2.26.1
keras==2.10,0
gym==0.20.0
pyglet==1.5.20
scipy==1.10.1

超参数设置

这段代码主要是导入所需的库,并设置了一些超参数。

    import numpy as np
    import tensorflow as tf
    from tensorflow import keras
    from tensorflow.keras import layers
    import gym
    import scipy.signal
    import time
    from tqdm import tqdm

    steps_per_epoch = 5000  # 每个 epoch 中训练的步数
    epochs = 20  # 用于训练的 epoch 数
    gamma = 0.90  # 折扣因子,用于计算回报
    clip_ratio = 0.2  # PPO 算法中用于限制策略更新的比率
    policy_learning_rate = 3e-4  # 策略网络的学习率
    value_function_learning_rate = 3e-4  # 值函数网络的学习率
    train_policy_iterations = 80  # 策略网络的训练迭代次数
    train_value_iterations = 80  # 值函数网络的训练迭代次数
    lam = 0.97  # PPO 算法中的 λ 参数
    target_kl = 0.01  # PPO 算法中的目标 KL 散度
    hidden_sizes = (64, 64) # 神经网络的隐藏层维度 
    render = False    # 是否开启画面渲染,False 表示不开启

模型定义

(1)这里定义了一个函数 discounted_cumulative_sums,接受两个参数 xdiscount,该函数的作用是计算给定奖励序列 x 的折扣累计和,折扣因子 discount 是一个介于 0 和 1 之间的值,表示对未来奖励的折扣程度。 在强化学习中,折扣累计和是一个常用的概念,表示对未来奖励的折扣累加。

def discounted_cumulative_sums(x, discount):
    return scipy.signal.lfilter([1], [1, float(-discount)], x[::-1], axis=0)[::-1]

(2)这里定义了一个Buffer类,用于存储训练数据。类中有如下主要的函数:

  • init: 初始化函数,用于设置成员变量的初始值

  • store: 将观测值、行为、奖励、价值和对数概率存储到对应的缓冲区中

  • finish_trajectory: 结束一条轨迹,用于计算优势和回报,并更新 trajectory_start_index 的值

  • get: 获取所有缓冲区的值,用在训练模型过程中。在返回缓冲区的值之前,将优势缓冲区的值进行标准化处理,使其均值为 0 ,方差为 1

    class Buffer:
        def __init__(self, observation_dimensions, size, gamma=0.99, lam=0.95):
            self.observation_buffer = np.zeros( (size, observation_dimensions), dtype=np.float32 )
            self.action_buffer = np.zeros(size, dtype=np.int32)
            self.advantage_buffer = np.zeros(size, dtype=np.float32)
            self.reward_buffer = np.zeros(size, dtype=np.float32)
            self.return_buffer = np.zeros(size, dtype=np.float32)
            self.value_buffer = np.zeros(size, dtype=np.float32)
            self.logprobability_buffer = np.zeros(size, dtype=np.float32)
            self.gamma, self.lam = gamma, lam
            self.pointer, self.trajectory_start_index = 0, 0
    
        def store(self, observation, action, reward, value, logprobability):
            self.observation_buffer[self.pointer] = observation
            self.action_buffer[self.pointer] = action
            self.reward_buffer[self.pointer] = reward
            self.value_buffer[self.pointer] = value
            self.logprobability_buffer[self.pointer] = logprobability
            self.pointer += 1
    
        def finish_trajectory(self, last_value=0):
            path_slice = slice(self.trajectory_start_index, self.pointer)
            rewards = np.append(self.reward_buffer[path_slice], last_value)
            values = np.append(self.value_buffer[path_slice], last_value)
            deltas = rewards[:-1] + self.gamma * values[1:] - values[:-1]
            self.advantage_buffer[path_slice] = discounted_cumulative_sums( deltas, self.gamma * self.lam )
            self.return_buffer[path_slice] = discounted_cumulative_sums(  rewards, self.gamma )[:-1]
            self.trajectory_start_index = self.pointer
    
        def get(self):
            self.pointer, self.trajectory_start_index = 0, 0
            advantage_mean, advantage_std = (  np.mean(self.advantage_buffer),  np.std(self.advantage_buffer), )
            self.advantage_buffer = (self.advantage_buffer - advantage_mean) / advantage_std
            return ( self.observation_buffer, self.action_buffer, self.advantage_buffer, self.return_buffer, self.logprobability_buffer, )
    
    

(3)这里定义了一个多层感知机(Multi-Layer Perceptron,MLP)的网络结构,有如下参数:

  • x:输入的张量
  • sizes:一个包含每一层的神经元个数的列表
  • activation:激活函数,用于中间层的神经元
  • output_activation:输出层的激活函数

该函数通过循环生成相应个数的全连接层,并将 x 作为输入传入。其中,units 指定每一层的神经元个数,activation 指定该层使用的激活函数,返回最后一层的结果。

def mlp(x, sizes, activation=tf.tanh, output_activation=None):
    for size in sizes[:-1]:
        x = layers.Dense(units=size, activation=activation)(x)
    return layers.Dense(units=sizes[-1], activation=output_activation)(x)

(4)这里定义了一个函数 logprobabilities,用于计算给定动作 a 的对数概率。函数接受两个参数,logitsa,其中 logits 表示模型输出的未归一化的概率分布,a 表示当前采取的动作。函数首先对 logits 进行 softmax 归一化,然后对归一化后的概率分布取对数,得到所有动作的对数概率。接着,函数使用 tf.one_hot 函数生成一个 one-hot 编码的动作向量,并与所有动作的对数概率向量相乘,最后对结果进行求和得到给定动作的对数概率。

def logprobabilities(logits, a):
    logprobabilities_all = tf.nn.log_softmax(logits)
    logprobability = tf.reduce_sum( tf.one_hot(a, num_actions) * logprobabilities_all, axis=1 )
    return logprobability

(5)这里定义了一个函数 sample_action。该函数接受一个 observation(观测值)参数,并在 actor 网络上运行该观测值以获得动作 logits(逻辑值)。然后使用逻辑值(logits)来随机采样出一个动作,并将结果作为函数的输出。

@tf.function
def sample_action(observation):
    logits = actor(observation)
    action = tf.squeeze(tf.random.categorical(logits, 1), axis=1)
    return logits, action

(6)这里定义了一个用于训练策略的函数train_policy。该函数使用带权重裁剪的 PPO 算法,用于更新 actor 的权重。

  • observation_buffer:输入的观测缓冲区
  • action_buffer:输入的动作缓冲区
  • logprobability_buffer:输入的对数概率缓冲区
  • advantage_buffer:输入的优势值缓冲区

在该函数内部,使用tf.GradientTape记录执行的操作,用于计算梯度并更新策略网络。计算的策略损失是策略梯度和剪裁比率的交集和。使用优化器policy_optimizer来更新actor的权重。最后,计算并返回 kl 散度的平均值,该值用于监控训练的过程。

@tf.function
def train_policy( observation_buffer, action_buffer, logprobability_buffer, advantage_buffer):
    with tf.GradientTape() as tape:   
        ratio = tf.exp( logprobabilities(actor(observation_buffer), action_buffer) - logprobability_buffer )
        min_advantage = tf.where(  advantage_buffer > 0, (1 + clip_ratio) * advantage_buffer, (1 - clip_ratio) * advantage_buffer, )
        policy_loss = -tf.reduce_mean( tf.minimum(ratio * advantage_buffer, min_advantage) )
    policy_grads = tape.gradient(policy_loss, actor.trainable_variables)
    policy_optimizer.apply_gradients(zip(policy_grads, actor.trainable_variables))
    kl = tf.reduce_mean( logprobability_buffer - logprobabilities(actor(observation_buffer), action_buffer) )
    kl = tf.reduce_sum(kl)
    return kl

(7)这里实现了价值函数(critic)的训练过程,函数接受两个参数:一个是 observation_buffer,表示当前存储的状态观察序列;另一个是 return_buffer,表示状态序列对应的回报序列。在函数内部,首先使用 critic 模型来预测当前状态序列对应的状态值(V), 然后计算当前状态序列的平均回报与 V 之间的均方误差,并对其进行求和取平均得到损失函数 value_loss。接下来计算梯度来更新可训练的变量值。

@tf.function
def train_value_function(observation_buffer, return_buffer):
    with tf.GradientTape() as tape:  
        value_loss = tf.reduce_mean((return_buffer - critic(observation_buffer)) ** 2)
    value_grads = tape.gradient(value_loss, critic.trainable_variables)
    value_optimizer.apply_gradients(zip(value_grads, critic.trainable_variables))
    

游戏初始化

这里用于构建强化学习中的 Actor-Critic 网络模型。首先,使用 gy m库中的 CartPole-v0 环境创建一个环境实例 env 。然后,定义了两个变量,分别表示观测空间的维度 observation_dimensions 和动作空间的大小 num_actions,这些信息都可以从 env 中获取。接着,定义了一个 Buffer 类的实例,用于存储每个时间步的观测、动作、奖励、下一个观测和 done 信号,以便后面的训练使用。

然后,使用 Keras 库定义了一个神经网络模型 Actor ,用于近似模仿策略函数,该模型输入是当前的观测,输出是每个动作的概率分布的对数。

另外,还定义了一个神经网络模型 Critic ,用于近似模仿值函数,该模型输入是当前的观测,输出是一个值,表示这个观测的价值。最后,定义了两个优化器,policy_optimizer 用于更新 Actor 网络的参数,value_optimizer 用于更新 Critic 网络的参数。

env = gym.make("CartPole-v0")
observation_dimensions = env.observation_space.shape[0]
num_actions = env.action_space.n
buffer = Buffer(observation_dimensions, steps_per_epoch)

observation_input = keras.Input(shape=(observation_dimensions,), dtype=tf.float32)
logits = mlp(observation_input, list(hidden_sizes) + [num_actions], tf.tanh, None)
actor = keras.Model(inputs=observation_input, outputs=logits)
value = tf.squeeze( mlp(observation_input, list(hidden_sizes) + [1], tf.tanh, None), axis=1 )
critic = keras.Model(inputs=observation_input, outputs=value)

policy_optimizer = keras.optimizers.Adam(learning_rate=policy_learning_rate)
value_optimizer = keras.optimizers.Adam(learning_rate=value_function_learning_rate)


保存未训练时的运动情况

在未训练模型之前,将模型控制游戏的情况保存是 gif ,可以看出来技术很糟糕,很快就结束了游戏。

import imageio
start = env.reset() 
frames = []
for t in range(steps_per_epoch):
    frames.append(env.render(mode='rgb_array'))
    start = start.reshape(1, -1)
    logits, action = sample_action(start)
    start, reward, done, _ = env.step(action[0].numpy())
    if done:
        break

with imageio.get_writer('未训练前的样子.gif', mode='I') as writer:
    for frame in frames:
        writer.append_data(frame)
        

模型训练

这里主要是训练模型,执行 eopch 轮,每一轮中循环 steps_per_epoch 步,每一步就是根据当前的观测结果 observation 来抽样得到下一步动作,然后将得到的各种观测结果、动作、奖励、value 值、对数概率值保存在 buffer 对象中,待这一轮执行游戏运行完毕,收集了一轮的数据之后,就开始训练策略和值函数,并打印本轮的训练结果,不断重复这个过程,

observation, episode_return, episode_length = env.reset(), 0, 0
for epoch in tqdm(range(epochs)):
    sum_return = 0
    sum_length = 0
    num_episodes = 0

    for t in range(steps_per_epoch):
        if render:
            env.render()

        observation = observation.reshape(1, -1)
        logits, action = sample_action(observation)
        observation_new, reward, done, _ = env.step(action[0].numpy())
        episode_return += reward
        episode_length += 1

        value_t = critic(observation)
        logprobability_t = logprobabilities(logits, action)

        buffer.store(observation, action, reward, value_t, logprobability_t)

        observation = observation_new

        terminal = done
        if terminal or (t == steps_per_epoch - 1):
            last_value = 0 if done else critic(observation.reshape(1, -1))
            buffer.finish_trajectory(last_value)
            sum_return += episode_return
            sum_length += episode_length
            num_episodes += 1
            observation, episode_return, episode_length = env.reset(), 0, 0

    ( observation_buffer, action_buffer, advantage_buffer,  return_buffer, logprobability_buffer, ) = buffer.get()

    for _ in range(train_policy_iterations):
        kl = train_policy( observation_buffer, action_buffer, logprobability_buffer, advantage_buffer )
        if kl > 1.5 * target_kl:
            break

    for _ in range(train_value_iterations):
        train_value_function(observation_buffer, return_buffer)

    print( f"完成第 {epoch + 1} 轮训练, 平均奖励: {sum_length / num_episodes}" )
    

打印:

完成第 1 轮训练, 平均奖励: 30.864197530864196
完成第 2 轮训练, 平均奖励: 40.32258064516129
...
完成第 9 轮训练, 平均奖励: 185.1851851851852
完成第 11 轮训练, 平均奖励: 172.41379310344828
...
完成第 14 轮训练, 平均奖励: 172.41379310344828
...
完成第 18 轮训练, 平均奖励: 185.1851851851852
...
完成第 20 轮训练, 平均奖励: 200.0

保存训练后的运动情况

在训练模型之后,将模型控制游戏的情况保存是 gif ,可以看出来技术很娴熟,可以在很长的时间内使得棒子始终保持近似垂直的状态。

import imageio
start = env.reset()
frames = []
for t in range(steps_per_epoch):
    frames.append(env.render(mode='rgb_array'))
    start = start.reshape(1, -1)
    logits, action = sample_action(start)
    start, reward, done, _ = env.step(action[0].numpy())
    if done:
        break


with imageio.get_writer('训练后的样子.gif', mode='I') as writer:
    for frame in frames:
        writer.append_data(frame)
        
        

训练后的样子.gif

如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.2.1 什么是Prompt
    • L2.2.2 Prompt框架应用现状
    • L2.2.3 基于GPTAS的Prompt框架
    • L2.2.4 Prompt框架与Thought
    • L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
    • L2.3.1 流水线工程的概念
    • L2.3.2 流水线工程的优点
    • L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
    • L3.1.1 Agent模型框架的设计理念
    • L3.1.2 Agent模型框架的核心组件
    • L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
    • L3.2.1 MetaGPT的基本概念
    • L3.2.2 MetaGPT的工作原理
    • L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
    • L3.3.1 ChatGLM的特点
    • L3.3.2 ChatGLM的开发环境
    • L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
    • L3.4.1 LLAMA的特点
    • L3.4.2 LLAMA的开发环境
    • L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/698332.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

以太网基础知识(二)——PAM4NRZ

概念:PAM4(Pulse Amplitude Modulation 4)是用于将数字数据转换成模拟信号。在400G以太网中PAM4被用于将数字数据转换成光信号以便在光纤中传输。PAM4技术通过改变光信号的振幅和相位来表示4个不同的数字状态,每个状态代表2个比特…

46-4 等级保护 - 网络安全等级保护概述

一、网络安全等级保护概述 原文:没有网络安全就没有国家安全 二、网络安全法 - 安全立法 中华人民共和国主席令 第五十三号 《中华人民共和国网络安全法》已于2016年11月7日由中华人民共和国第十二届全国人民代表大会常务委员会第二十四次会议通过,并自2017年6月1日起正式…

问题:高炉风口前的燃烧带的边界是以()含量降为1%为界限标志的。 #媒体#媒体#笔记

问题:高炉风口前的燃烧带的边界是以()含量降为1%为界限标志的。 参考答案如图所示

RESTful API最佳实践:Python构建指南

目录 一、引言 二、RESTful API设计原则 三、Python构建RESTful API的技术栈 四、Flask构建RESTful API实践 安装Flask 定义路由和资源 处理HTTP方法 错误处理 数据验证和序列化 使用Flask扩展 五、最佳实践案例 七、结论 一、引言 在当今的软件开发领域&#…

C51学习归纳10 --- 单总线通信协议、DS18B20

通信协议是最重要的,我们之前学习了I2C通信协议,这一节我们学习一下新的通信协议,单总线通信。 一、开发板原理图 可以看出直接由P3_7口控制,但是遵循单总线协议。 单总线的电路要求 现在介绍单总线的通信协议细节: 1…

免费插件集-illustrator插件-Ai插件-文本属性批处理

文章目录 1.介绍2.安装3.通过窗口>扩展>知了插件4.功能解释5.总结 1.介绍 本文介绍一款免费插件,加强illustrator使用人员工作效率,进行文本属性批处理。首先从下载网址下载这款插件 https://download.csdn.net/download/m0_67316550/87890501&am…

【递归、搜索与回溯】综合练习 {回溯恢复现场;剪枝优化}

一、经验总结 在递归算法中某些变量需要在回溯到上一层递归后恢复现场(如递归路径),恢复现场的方法有: 全局变量手动恢复:如果该变量的类型为自定义类型(vector, string等)则推荐定义为全局变…

全彩LED显示屏可视角度分析

在当今数字化时代,全彩LED显示屏已成为公共场所、商业中心、体育赛事等场合传递信息与视觉震撼的重要媒介。然而,对于这些显示屏而言,一个关键的技术指标——可视角度,直接决定了观众能否从各个方位享受到一致且优质的视觉体验。本…

SQLserver前五讲课堂笔记

第一讲 基本内容 为什么要学习数据库系统?什么是数据库?什么是数据库系统?什么是数据库管理系统?本课程学什么以及学到什么程度? 重点难点 一组概念的区分:数据库、数据库系统和数据库管理系统熟悉表 的相关要素及术语熟悉数据库系统的构成(工作…

win10怎么截图?电脑截图的3个方法分享

win10怎么截图?在Windows 10操作系统中,截图功能不仅强大而且极其便捷。无论用户需要快速捕捉整个屏幕的内容,还是精确截取屏幕上的特定区域,它都能迅速响应并满足需求。通过内置的截图工具和快捷键,我们可以轻松完成各…

SwiftUI中自定义ViewModifier

在SwiftUI中,ViewModifier是一种强大的工具,用于封装和复用视图修改逻辑。通过创建自定义的ViewModifier,我们可以以一种干净且可维护的方式重用视图配置和样式。本文将介绍如何在SwiftUI中创建和使用自定义ViewModifier。 ViewModifier是一…

【Linux】ls命令

这个命令主要是用于显示指定工作目录下之内容(列出目前工作目录所含的文件及子目录)。 掌握几个重点的常使用的就可以: ls -l # 以长格式显示当前目录中的文件和目录 ls -a # 显示当前目录中的所有文件和目录&am…

【内存管理】内存布局

ARM32位系统的内存布局图 32位操作系统的内存布局很经典,很多书籍都是以32位系统为例子去讲解的。32位的系统可访问的地址空间为4GB,用户空间为1GB ~ 3GB,内核空间为3GB ~ 4GB。 为什么要划分为用户空间和内核空间呢? 一般处理器…

BarTender 常见的使用要点

BarTender 简述 BarTender是由美国海鸥科技(Seagull Scientific)推出的一款条码打印软件,被广泛应用于标签、条形码、证卡和RFID标记的设计和打印领域。它在全球范围内拥有众多用户,被公认为标签打印方面的全球领先者。BarTender…

一.iOS核心动画 - 关于图层与视图

引言 Core Animation听起来会让人误以为它只是用来做动画的,但是事实上它是从Layer Kit库演变而来的,其中做动画的功能只是Core Animation特性的一小部分。 Core Animation是一个复核引起,它的作用就是尽可能快地组合屏幕上不同的显示内容&…

【Vue】getters

除了state之外,有时我们还需要从state中筛选出符合条件的一些数据,这些数据是依赖state的,此时会用到getters getters就类似于属性中的计算属性 这个getter只有获取,如果需要设置修改,还是需要经过mutations getters里…

实验四、零比特插入《计算机网络》

但凡这句话有一点用的话也不至于一点用都没有。 目录 一、实验目的 二、实验内容 三、实验小结 一、实验目的 掌握零比特插入原理及方法使用任意编程语言实现零比特插入方法。 二、实验内容 掌握零比特插入原理及方法 点对点协议 PPP(Point-to-Point Protoco…

8.11 矢量图层线要素单一符号使用六(光栅线)

文章目录 前言光栅线(Raster Line)QGis设置线符号为光栅线(Raster Line)二次开发代码实现光栅线(Raster Line) 总结 前言 本章介绍矢量图层线要素单一符号中光栅线(Raster Line)的使…

Navicat导入json文件(json文件数据导入到MySQL表中)

天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…

Threejs-05、设置响应式画布与全屏控制。

1、自适应屏幕大小 你会发现,我们前面写好的代码,在页面尺寸发生改变的时候,并不能自适应的改变尺寸,而出现空白或者滚动条突出的情况。所以监听屏幕大小的改变,来重新设置相机的宽高比例和渲染器的尺寸大小,代码如下: // 监听画面变化,更新渲染画面 window.addEven…