【MATLAB第68期】基于MATLAB的LSTM长短期记忆网络多变量时间序列数据多步预测含预测未来(非单步预测)

【MATLAB第68期】基于MATLAB的LSTM长短期记忆网络多变量时间序列数据多步预测含预测未来(非单步预测)

输入前25个时间,输出后5个时间

一、数据转换

1、原始数据

5列时间序列数据,70行样本
70×5 数据矩阵结构
在这里插入图片描述

2、数据转换

将总数据data划分成141cell,且每行为55的数据
14行中,每行代表5个变量的5天数据。
多步预测:根据前25天数据预测后5天数据
即51cell 预测 11cell

如:1~5行cell 预测第6行(1-25天,预测26-30天)
2~6行cell 预测第7行(6-30天,预测31-35天)
······
9-13行cell 预测第14行(41-65天,预测66-70天)

其次,将data_y弄成525,与data_x序列长度一致
data_add(n,1) ={zeros(5,20)};,增添零值
即将data_y 由5
5 变换为 5*25

二、参数设置

%% LSTM网络训练
inputsize =5;
outputsize =5;
layers=[sequenceInputLayer(inputsize);
        bilstmLayer(200);
        dropoutLayer(0.2);
        fullyConnectedLayer(outputsize);
        regressionLayer();
        ];
    
 opts = trainingOptions('adam', ...
    'MaxEpochs',2000, ...
    'GradientThreshold',1,...
    'ExecutionEnvironment','cpu',...
    'InitialLearnRate',0.005, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',125, ...   %2个epoch后学习率更新
    'LearnRateDropFactor',0.2, ...
    'Shuffle','once',...  % 时间序列长度
    'L2Regularization',0.005,...%正则项系数初始值。建议一开始将正则项系数λ设置为0,先确定一个比较好的learning rate。然后固定该learning rate,给λ一个值(比如1.0),然后根据validation accuracy,将λ增大或者减小10倍(增减10倍是粗调节,当你确定了λ的合适的数量级后,比如λ = 0.01,再进一步地细调节,比如调节为0.020.030.009之类。
    'SequenceLength',25,...
    'MiniBatchSize',10,...%比如mini-batch size设为100,则权重更新的规则为:%也就是将100个样本的梯度求均值,替代online learning方法中单个样本的梯度值
    'Verbose',1,...
'Plots','training-progress');

三、预测

1、测试集效果

输入data_x最后一行数据 ,即41-65天
输出 [1-20构造数据]+ 66-70天数据
筛选后5天数据 。
在这里插入图片描述
在这里插入图片描述

2、预测未来

在这里插入图片描述

若需要预测未来5天 P1(71-75),则只需要输入
第46-70天 5个变量数据
就会得到 [1*20构造数据]+第71-75天数据

若需要预测未来10天 P2(76-80),则只需要输入
第51-75天 (71-75天数据由P1提供)5个变量数据
就会得到 [1*20构造数据]+第76-80天数据

若需要预测未来15天 P3(81-85),则只需要输入
第56-80天 (76-80天数据由P2提供)5个变量数据
就会得到 [1*20构造数据]+第81-85天数据

四、代码获取

后台私信回复“第68期”可获取下载链接。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/69823.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】NoDoze:使用自动来源分类对抗威胁警报疲劳(NDSS-2019)

NODOZE: Combatting Threat Alert Fatigue with Automated Provenance Triage 伊利诺伊大学芝加哥分校 Hassan W U, Guo S, Li D, et al. Nodoze: Combatting threat alert fatigue with automated provenance triage[C]//network and distributed systems security symposium.…

2023/8/11题解

时间限制: 1000MS 内存限制: 65536KB 解题思路 建树 模拟 &#xff0c;复杂在于建树&#xff0c;此处从题目需求可知需要按层建树&#xff0c;所以需要队列模拟&#xff0c;查找比较容易就是普通的深搜 参考代码 #include<bits/stdc.h> using namespace std; vector<…

Windows 环境下 Python3 离线安装 cryptography 失败

发布Flask Web项目时&#xff0c;报错缺少Cryptography&#xff0c;于是尝试重新安装该库&#xff0c;但本机没有网络&#xff0c;只支持手动离线安装&#xff0c;尝试了pip、setup.py两种方式安装&#xff0c;结果都报错。。最后使用将安装包拷贝至本机(在其他电脑上安装的sit…

【算法挨揍日记】day01——双指针算法_移动零、 复写零

283.移动零 283. 移动零https://leetcode.cn/problems/move-zeroes/ 题目&#xff1a; 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操作。 …

gitee分支合并

合并dev分支到master&#xff08;合并到主分支&#xff09; git checkout master git merge dev //这里的dev表示你的分支名称 git push //推送到远程仓库 效果如下图 不报错就表示推送成功了&#xff0c;希望能帮助各位小伙伴

DevOps最佳实践和工具在本地环境中的概述

引言 最近&#xff0c;我进行了一次网上搜索&#xff0c;以寻找DevOps的概述&#xff0c;尽管有大量的DevOps工具和实践&#xff0c;但我无法找到一个综合的概述。因此&#xff0c;我开始了对DevOps生态系统和最佳实践的梳理&#xff0c;以创建一个整体视图,方便后续研究实践 C…

5.1 web浏览安全

数据参考&#xff1a;CISP官方 目录 Web应用基础浏览器所面临的安全威胁养成良好的Web浏览安全意识如何安全使用浏览器 一、Web应用基础 1、Web应用的基本概念 Web ( World wide Web) 也称为万维网 脱离单机Web应用在互联网上占据了及其重要的地位Web应用的发展&#xf…

K8s环境下监控告警平台搭建及配置

Promethues是可以单机搭建的&#xff0c;参考prometheus入门[1] 本文是就PromethuesGrafana在K8s环境下的搭建及配置 Prometheus度量指标监控平台简介 启动minikube minikube start 安装helm 使用Helm Chart 安装 Prometheus Operator: helm install prometheus-operator stabl…

AI:01-基于机器学习的深度学习的玫瑰花种类的识别

文章目录 一、数据集介绍二、数据预处理三、模型构建四、模型训练五、模型评估六、模型训练七、模型评估八、总结深度学习技术在图像识别领域有着广泛的应用,其中一种应用就是玫瑰花种类的识别。在本文中,我们将介绍如何使用机器学习和深度学习技术来实现玫瑰花种类的识别,并…

备忘录模式(C++)

定义 在不破坏封装性的前提下&#xff0c;捕获一-个对象的内部状态&#xff0c;并在该对象之外保存这个状态。这样以后就可以将该对象恢复到原先保存的状态。 应用场景 ➢在软件构建过程中&#xff0c;某些对象的状态在转换过程中&#xff0c;可能由于某种需要&#xff0c;要…

c++遍历当前windows目录

前言 设置vs的高级属性为使用多字节字符集&#xff0c;不然会报char类型的实参与LPCWSTR类型的形参类型不兼容的错误 代码 #include <iostream> #include <cstring> #include <windows.h>void listFiles(const char* dir);int main() {using namespace st…

【服务平台】Rancher运行和管理Docker和Kubernetes,提供管理生产中的容器所需的整个软件堆栈

Rancher是一个开源软件平台&#xff0c;使组织能够在生产中运行和管理Docker和Kubernetes。使用Rancher&#xff0c;组织不再需要使用一套独特的开源技术从头开始构建容器服务平台。Rancher提供了管理生产中的容器所需的整个软件堆栈。  完整软件堆栈 Rancher是供采用容器的团…

SpringBoot案例-部门管理-删除

目录 查看页面原型&#xff0c;明确需求 页面原型 需求 阅读接口文档 思路分析 功能接口开发 控制层&#xff08;Controllre类&#xff09; 业务层&#xff08;Service类&#xff09; 持久层&#xff08;Mapper类&#xff09; 接口测试 前后端联调 查看页面原型&a…

NIDS网络威胁检测系统-Golang

使用技术&#xff1a; Golang Gin框架 前端三件套 演示画面&#xff1a; 可以部署在linux和window上 目前已在Kali2021和Window10上进行测试成功

【瑞吉外卖】Linux学习

Linux常用命令 Linux命令初体验 Linux的命令都是由一个或几个单词的缩写构成的 命令对应英文作用lslist查看当前目录下的内容pwdprint work directory查看当前所在目录cd [目录名]change directory切换目录touch [文件名]touch如果文件不存在&#xff0c;新建文件mkdir [目录…

Redis_哨兵模式

9. 哨兵模式 9.1 简介 当主库宕机&#xff0c;在从库中选择一个&#xff0c;切换为主库。 问题: 主库是否真正宕机?哪一个从库可以作为主库使用?如何实现将新的主库的信息通过给从库和客户端&#xff1f; 9.2 基本流程 哨兵主要任务&#xff1a; 监控选择主库通知 会有…

JavaWeb-Servlet服务连接器(一)

目录 1.Servlet生命周期 2.Servlet的配置 3.Servlet的常用方法 4.Servlet体系结构 5.HTTP请求报文 6.HTTP响应报文 1.Servlet生命周期 Servlet&#xff08;Server Applet&#xff09;是Java Servlet的简称。其主要的功能是交互式地浏览和修改数据&#xff0c;生成一些动态…

python爬虫——爬虫伪装和反“反爬”

前言 爬虫伪装和反“反爬”是在爬虫领域中非常重要的话题。伪装可以让你的爬虫看起来更像普通的浏览器或者应用程序&#xff0c;从而减少被服务器封禁的风险&#xff1b;反“反爬”则是应对服务器加强的反爬虫机制。下面将详细介绍一些常见的伪装和反反爬技巧&#xff0c;并提…

92. 反转链表 II

92. 反转链表 II 题目-中等难度示例1. 获取头 反转中间 获取尾 -> 拼接2. 链表转换列表 -> 计算 -> 转换回链表 题目-中等难度 给你单链表的头指针 head 和两个整数 left 和 right &#xff0c;其中 left < right 。请你反转从位置 left 到位置 right 的链表节点…

【Hilog】鸿蒙系统日志源码分析

【Hilog】鸿蒙系统日志源码分析 Hilog采用C/S结构&#xff0c;Hilogd作为服务端提供日志功能。Client端通过API调用&#xff08;最终通过socket通讯&#xff09;与HiLogd打交道。简易Block图如下。 这里主要分析一下。Hilog的读、写、压缩落盘&#xff0c;以及higlog与android…