STM32 Customer BootLoader 刷新项目 (一) STM32CubeMX UART串口通信工程搭建

STM32 Customer BootLoader 刷新项目 (一) STM32CubeMX UART串口通信工程搭建

文章目录

  • STM32 Customer BootLoader 刷新项目 (一) STM32CubeMX UART串口通信工程搭建
      • 功能与作用
      • 典型工作流程
    • 1. 硬件原理图介绍
    • 2. STM32 CubeMX工程搭建
      • 2.1 创建工程
      • 2.2 系统配置
      • 2.3 USART串口配置
      • 2.4 时钟树配置
      • 2.5 工程导出设置
    • 3. 代码编写
    • 4. 工程下载和调试

首先用STM32CubeMX 软件搭建基础工程,来作为二级BootLoader,一级BootLoader是STM32官方自带的startup_stm32f407zgtx.s。我们基于上述最小工程来实现Customer BootLoader的功能。本项目采用的是通过串口实现固件刷新。

下面简单介绍一下二级BootLoder的功能与作用:

二级Customer BootLoader(CBL,Customer BootLoader)是一种在嵌入式系统中常见的软件组件。它主要负责在系统启动时执行初始引导操作,加载和运行应用程序代码。二级Customer BootLoader与一级BootLoader(通常称为Primary BootLoader, PBL)一起工作,提供了更灵活和复杂的引导机制。

功能与作用

  1. 硬件初始化: 二级Customer BootLoader通常负责对特定硬件的初始化工作。虽然一级BootLoader已经完成了一些基本的硬件初始化,但二级BootLoader会进行更详细的硬件配置,如设置外设(例如UART、SPI、I2C等)、初始化存储设备(如Flash、EEPROM等)以及配置系统时钟等。
  2. 固件验证与更新: 二级Customer BootLoader常常用于验证固件的完整性和合法性。这可以通过校验和(Checksum)、加密签名等方式来实现。若检测到固件损坏或版本过旧,BootLoader可以从预设的位置(如网络、USB设备或备用存储区)下载并更新固件。
  3. 安全启动: 为了增强系统安全性,二级BootLoader可以实现安全启动机制。它会检查固件的数字签名或哈希值,确保只有经过验证和授权的固件才能被加载和执行,从而防止恶意代码的运行。
  4. 引导多种操作系统或应用程序: 二级Customer BootLoader可以配置为引导不同的操作系统或应用程序。例如,在嵌入式系统中,可能需要根据不同的条件引导进入不同的应用程序模块,BootLoader可以根据预设的规则进行选择和加载。
  5. 配置和诊断功能: 二级BootLoader可以提供一些配置和诊断功能。例如,它可以允许用户通过串口或网络接口进入配置模式,调整系统参数,进行硬件诊断和调试。
  6. 引导时间优化: 由于嵌入式系统通常需要快速启动,二级BootLoader可以优化引导过程,减少启动时间。它可以通过压缩固件、优化初始化代码等手段来实现快速引导。

典型工作流程

  1. 系统加电后,一级BootLoader(PBL)启动
    • 负责基本硬件初始化(如设置堆栈指针、初始化RAM等)。
    • 加载并执行二级BootLoader(CBL)。
  2. 二级BootLoader启动
    • 执行更详细的硬件初始化。
    • 验证固件的完整性和合法性。
    • 根据系统配置和状态,选择合适的固件或操作系统进行引导。
    • 加载并启动应用程序或操作系统。

目前本项目的Customer BootLoader具备:

  1. 获取软件版本;
  2. 读芯片Chip ID;
  3. 获取Flash Read Protection等级;
  4. 擦除指定Flash Sector;
  5. 更新指定Flash Sector内容;
  6. 使能读/写保护;

下面开始我们本章内容的工程搭建,其中部分图借用洋桃电子杜老师的STM F4系列的课程内容。

1. 硬件原理图介绍

本项目采用正点原子探索者v2开发板,选用其中的左下角的USB串口进行和上位机之间的串口通信。

image-20240608085309250

正点原子STM32F4 探索者V2开发板,如下图所示,通过短接PA9-RXD,短接PA10-TXD,即将USART1与CH340芯片连接在一起,串口USART1与上位机可通过USB进行通信。

image-20240601085106572

如下图电路所示,使用一根MicroUSB结构的USB数据线,一端连接计算机的USB口,一端连接开发版左下角的USB_232口上,就可以在计算机上虚拟出一个串口,通过这个虚拟串口可以进行计算机与开发板之间的串口通信。

image-20240601085723436

image-20240601185940740

2. STM32 CubeMX工程搭建

2.1 创建工程

打开STM32CubdeMX,点击New Project创建新工程

image-20240519214220349

选择 STM32F407 ZGT6

image-20240520070646930

2.2 系统配置

点击左侧System Core,选择RCC,将HSE和LSE都设置为Crystal/Ceramic Resonator(晶体/陶瓷振荡器)

image-20240604074221880

点击SYS,选择Debug功能为JTAG(5 pins),跟板子调试口对应image-20240604075633710

2.3 USART串口配置

选择左侧的Connecttivity选项,点击USART1,如下图所示,点击Mode开始配置

image-20240604080347571

STM32对USART模块提供了下面的这些模式,根据需求选择相应模式,本项目选择的是异步模式Asynchronous。

image-20240604080404318

下面我们来对USART进行配置,首先开发板上的串口对应的USART1串口,Mode配置为异步模式Asynchronous,STMCubeMX会自动分配引脚,目前分配的USART1_RX对于PA10,USART1_TX对于PA9,和我们开发板的引脚正好对应,如果不对应的话,可以根据芯片的data Sheet改成相应的引脚。

下面的参数配置Parameter Settings按照默认配置来,波特率为 115200 bit/s,这里确保主从机是一致的,才能通信成功,数据位 8,无校验位,停止位1,数据方向:Receive and Transmit,采样:16.

image-20240604080436567

点击下方的GPIO Settings,可以看到为USART1自动分配的默认引脚

image-20240604080454808

2.4 时钟树配置

点击上方的Clock Configuration,开始配置时钟

image-20240611074559483

下面我们来看一下时钟树的结构,如下图所示

image-20240604081134525

现在开始配置开发板相关的时钟频率,首先选择做左边的Input frequency,选择外部8M的晶振,选择HSE,选择PLLCLK,在HCLK处将时钟敲定为168MHz,即STM32F407可支持的最大时钟频率

image-20240604081430121

2.5 工程导出设置

如下图所示,设置工程

image-20240604213948820

代码生成设置

image-20240604214023852

高级设置Advanced Settings

image-20240604214510752

点击右上角,生成代码GENERATE CODE

image-20240611075023223

点击Open Project,本项目是使用STM32CubeIDE作为集成开发环境,做到编译和调试代码的工具

image-20240604214643976

3. 代码编写

我们目前使用的是Hal库进行的工程实现,如下图所示,是串口轮询发送函数HAL_UART_Transmit(),在发送的过程中,会一直在该函数中进行发送,是Polling Mode。

image-20240608084049717

下图是串口接收函数 HAL_UART_Receive(),也是Polling Mode,在接收数据的过程中,CPU无法被抢占,一直需要等到数据被发送完成后才可退出该函数

image-20240608084138029

下面是在main.c中的代码实现:

引用c标准头文件

image-20240611080012875

宏定义,BL_DEBUG_MSG_EN是为调试用的,重定义huart1,设置数据bl_rx_buffer

image-20240611075845775

在main()函数中调用bootloader_uart_read_data()函数进行数据接收和发送

image-20240611075754745

bootloader_uart_read_data()函数中先接收在发送。

image-20240611075915162

printmsg()打印数据函数实现。

image-20240611075926137

下面是main.c的完整代码:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdarg.h>
#include <string.h>
#include <stdint.h>
#include <stdio.h>
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define BL_DEBUG_MSG_EN
#define BL_RX_LEN  200

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */
#define C_UART   &huart1

uint8_t bl_rx_buffer[BL_RX_LEN];
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */
void  bootloader_uart_read_data(void);
static void printmsg(char *format,...);

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
	  bootloader_uart_read_data();
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Configure the main internal regulator output voltage
  */
  __HAL_RCC_PWR_CLK_ENABLE();
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 4;
  RCC_OscInitStruct.PLL.PLLN = 168;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = 4;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOH_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();

/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

void  bootloader_uart_read_data(void)
{
	uint8_t rcv_len = 0;
	uint8_t rcv_flag = 0;
	memset(bl_rx_buffer, 0, 200);
	//here we will read and decode the commands coming from host
	//first read only one byte from the host , which is the "length" field of the command packet
	HAL_UART_Receive(C_UART, (uint8_t *)bl_rx_buffer, 1, HAL_MAX_DELAY);
	rcv_len= bl_rx_buffer[0];
	if (rcv_len != 0)
	{
		HAL_UART_Transmit(C_UART,(uint8_t *)&rcv_len, 1, HAL_MAX_DELAY);
		rcv_flag = 1;
	}
	if (rcv_flag == 1)
	{
		printmsg("-> Going to BL mode\n\r");
	}

}

/* prints formatted string to console over UART */
 void printmsg(char *format,...)
 {
#ifdef BL_DEBUG_MSG_EN
	char str[80];

	/*Extract the the argument list using VA apis */
	va_list args;
	va_start(args, format);
	vsprintf(str, format,args);
	HAL_UART_Transmit(C_UART,(uint8_t *)str, strlen(str),HAL_MAX_DELAY);
	va_end(args);
#endif
 }


/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

4. 工程下载和调试

将工程编译,之后下载到板子中。

image-20240608084959855

打开设备管理器,查看串口的端口号COM

image-20240608084402078

打开正点原子的串口调试助手,选择刚才设备管理器中串口的COM号,波特率设置为115200,其他默认,打开串口,随便发送一个数据,开发板接收到这个数据,都会原封不动的将该数据打印出来,然后在执行打印Going to BL mode,说明能够接收并发送数据,至此,我们开发Customer BootLoader的第一步,最小工程代码已经搭建完成,后续我们进行上位机与开发板之间的通信协议开发。

image-20240608084720673

如果大家有什么疑问,请随时私信联系我。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/697944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

头部外伤怎么办?别大意,科学处理是关键

头部外伤是一种常见的伤害&#xff0c;它可能由跌倒、撞击或其他事故造成。虽然许多头部外伤看似轻微&#xff0c;但如果不妥善处理&#xff0c;可能会带来严重的后果。因此&#xff0c;了解头部外伤的处理方法至关重要。 一、初步判断伤势 头部外伤后&#xff0c;首先要观察伤…

国资e学快速学习实战教程

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

react项目--博客管理

文章目录 技术栈登录存信息配置tokenhooks使用路由配置各页面技术总结首页发布文章文章详情页 个人主页分类页 本篇文章总结一个开发的react项目—博客系统 技术栈 React、react-redux、react-router 6&#xff0c;Ant Design&#xff0c;es6&#xff0c;sass&#xff0c;webp…

微服务之负载均衡器

1、负载均衡介绍 负载均衡就是将负载(工作任务&#xff0c;访问请求)进行分摊到多个操作单元(服务器&#xff0c;组件)上 进行执行。 根据负载均衡发生位置的不同&#xff0c; 一般分为服务端负载均衡和客户端负载均衡。 服务端负载均衡指的是发生在服务提供者一方&#xff…

AWS S3存储桶中如何下载文件

AWS S3存储桶中如何下载文件 1.单个下载 AWS S3 控制台提供了下载单个文件的功能&#xff0c;但是不支持直接在控制台中进行批量下载文件。您可以通过以下步骤在 AWS S3 控制台上下载单个文件&#xff1a;   1.1登录 AWS 管理控制台。   1.2转到 S3 服务页面。   1.3单击…

使用 C# 学习面向对象编程:第 4 部分

C# 构造函数 第 1 部分仅介绍了类构造函数的基础知识。 在本课中&#xff0c;我们将详细讨论各种类型的构造函数。 属性类型 默认构造函数构造函数重载私有构造函数构造函数链静态构造函数析构函数 请注意构造函数的一些基本概念&#xff0c;并确保你的理解非常清楚&#x…

西门子PLC位逻辑指令学习(SCL语言)

R_TRIG 参数 功能 当CLK信号出现一个低电平到高电平的跳变时&#xff0c;输出Q导通一个周期。 实例 定义以下类型变量 "R_TRIG_DB"(CLK:"data".source,Q>"data".result); //当source输入出现低电平到高电平跳变&#xff0c;result信号…

《Brave New Words 》4.2 AI 与学生心理健康辅导的结合

Part IV Better Together 第四部分 携手共进 AI Meets Student Mental Health Coaching AI 与学生心理健康辅导的结合 Here’s the scenario: You’re minutes away from taking a final exam. You’ve studied, but your heart is racing and your mind has gone blank. Anxie…

MIPI A-PHY协议学习

一、说明 A-PHY是一种高带宽串行传输技术,主要为了减少传输线并实现长距离传输的目的,比较适用于汽车。同时,A-PHY兼容摄像头的CSI协议和显示的DSI协议。其主要特征: 长距离传输,高达15m和4个线内连接器; 高速率,支持2Gbps~16Gbps; 支持多种车载线缆(同轴线、屏蔽差分…

探索C++ STL的设计方式:将算法与数据结构分离

STL的设计 一、简介二、STL容器三、C数组四、用户定义的集合4.1、使用标准集合的typedef4.2、重用标准迭代器4.3、实现自己的迭代器 五、总结 一、简介 本文介绍STL的设计方式&#xff0c;以及如何设计自己的组件&#xff0c;使其能够充分利用STL的功能。 STL的设计旨在将算法…

多目标融合参数搜索

多目标融合 权重分类目人群。 trick normlize 不同Score之间含义、量级和分布差异较大&#xff1a;评分计算的不同部分的意义、范围和分布存在显著差异&#xff0c;这使得直接比较或融合它们的结果变得困难。显式反馈&#xff08;如点赞率&#xff09;存在用户间差异&#…

盘点四家企业软件巨头的Gen AI应用进程

文/明道云创始人任向晖 目前大部份行业分析还聚焦在Open AI&#xff0c;Langchain这些和Generative AI直接相关的企业和产品上。实际上&#xff0c;企业软件市场的感知和行动已经非常迅速。在此项技术进入公众视野18个月后&#xff0c;我们来盘点一下领先的企业软件应用是如何利…

Lua连接Redis客户端执行命令

该示例演示使用Redis连接池&#xff0c;及Redis执行命令与获取返回数据 require("api.website") local dkjson require("api.dkjson")-- 创建连接池 local pool redis_pool.new() -- 置连接池信息 pool:start("127.0.0.1",6379,"998866&…

C语言之argc、argv与main函数的传参

一 &#xff1a;谁给main函数传参 &#xff08;1&#xff09;调用main函数所在的程序的它的父进程给main函数传参&#xff0c;并且接收main函数的返回值 二 &#xff1a;为什么需要给main函数传参 &#xff08;1&#xff09;首先mian函数不传承是可以的&#xff0c;也就是说它的…

字符串拼接之char实现

目录 一、前言 二、memcpy函数用法 三、代码实现 一、前言 c中想到字符串拼接&#xff0c;我们都知道可以用c库中std::string的字符串中的简单加法进行拼接。示例&#xff1a; int main() {std::string str1 "hello";std::string str2 "World";std::…

OpenEuler系统学习

OpenEuler系统简介 什么是OpenEuler&#xff0c;个人理解就是&#xff1a;通过社区合作&#xff0c;打造统一和开放的操作系统。 官方是这么介绍的&#xff1a; 欧拉是数字基础设施的开源操作系统&#xff0c;可广泛部署于服务器、云计算、边缘计算、嵌入式等各种形态设备&a…

Vue 面试通杀秘籍

理论篇&#xff1a; 1. 说说对 Vue 渐进式框架的理解&#xff08;腾讯医典&#xff09; a) 渐进式的含义&#xff1a; 主张最少, 没有多做职责之外的事 b) Vue 有些方面是不如 React&#xff0c;不如 Angular.但它是渐进的&#xff0c;没有强主张&#xff0c; 你可以在原有…

Kimichat使用案例013:用kimichat批量识别出图片版PDF文件中的文字内容

文章目录 一、介绍二、具体操作三、信息识别一、介绍 图片版的PDF文件,怎么才能借助AI工具来提取其中全部的文字内容呢? 第一步:将PDF文件转换成图片格式 具体方法参见文章: Kimichat使用案例011:用kimichat将PDF自动批量分割成多个图片(零代码编程) 第二步:识别图片中…

Redis实战宝典:基础知识、实战技巧、应用场景及最佳实践全攻略

背景 在Java系统实现过程中&#xff0c;我们不可避免地会借助大量开源功能组件。然而&#xff0c;这些组件往往功能丰富且体系庞大&#xff0c;官方文档常常详尽至数百页。而在实际项目中&#xff0c;我们可能仅需使用其中的一小部分功能&#xff0c;这就造成了一个挑战&#…

重庆地区媒体宣传邀约资源整理

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 重庆地区媒体宣传邀约资源整理 一、主流媒体资源 电视台&#xff1a;重庆电视台&#xff1a;作为重庆地区最具影响力的电视媒体之一&#xff0c;拥有多个频道&#xff0c;涵盖新闻、综艺…