Linux shell编程学习笔记58:cat /proc/mem 获取系统内存信息

0 前言

在开展系统安全检查的过程中,除了收集cpu信息,我们还需要收集内存信息。在Linux中,获取内存信息的命令很多,这里我们着重研究 cat /proc/mem命令。

1 cat /proc/mem命令

 /proc/meminfo 文件提供了有关系统内存的使用情况报告。

当我们想找出已用和可用内存、交换空间或缓存和缓冲区等统计信息时,我们可以分析此文件的内容。

需要注意的是,在这个文件中,除了基本信息之外,还有更多数据。

[purpleendurer @bash ~ ] cat /proc/meminfo
MemTotal:        3855952 kB
MemFree:         2040864 kB
MemAvailable:    3356504 kB
Buffers:           39224 kB
Cached:          1400764 kB
SwapCached:            0 kB
Active:            86028 kB
Inactive:        1536020 kB
Active(anon):        244 kB
Inactive(anon):   182156 kB
Active(file):      85784 kB
Inactive(file):  1353864 kB
Unevictable:           0 kB
Mlocked:               0 kB
SwapTotal:             0 kB
SwapFree:              0 kB
Dirty:                96 kB
Writeback:             0 kB
AnonPages:        179504 kB
Mapped:           215608 kB
Shmem:               336 kB
KReclaimable:     123612 kB
Slab:             148076 kB
SReclaimable:     123612 kB
SUnreclaim:        24464 kB
KernelStack:        2912 kB
PageTables:         2984 kB
NFS_Unstable:          0 kB
Bounce:                0 kB
WritebackTmp:          0 kB
CommitLimit:     1927976 kB
Committed_AS:     482236 kB
VmallocTotal:   34359738367 kB
VmallocUsed:       16208 kB
VmallocChunk:          0 kB
Percpu:             1016 kB
HardwareCorrupted:     0 kB
AnonHugePages:    104448 kB
ShmemHugePages:        0 kB
ShmemPmdMapped:        0 kB
FileHugePages:         0 kB
FilePmdMapped:         0 kB
DupText:               0 kB
MemZeroed:             0 kB
HugePages_Total:       0
HugePages_Free:        0
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB
Hugetlb:               0 kB
DirectMap4k:       51896 kB
DirectMap2M:     2945024 kB
DirectMap1G:     1048576 kB
[purpleendurer @bash ~ ] 

在不同版本的Linux系统中,命令返回的信息项也各有不同。

序号信息项信息值说明
1MemTotal:3855952 kB

系统所有可用RAM数量( total usable RAM)。

系统从加电开始到引导完成,BIOS等要保留一些内存,内核要保留一些内存,最后剩下可供系统支配的内存就是MemTotal。这个值在系统运行期间一般是固定不变的。

2MemFree:2040864 kB

系统层面留着未分配的内存数量。(free RAM, the memory which is not used for anything at all)

3MemAvailable:3356504 kB

可以分配给应用程序使用的内存数量(available RAM, the amount of memory available for allocation to any process)。

系统中有些内存虽然已被使用但是可以回收的,比如cache/buffer、slab都有一部分可以回收,所以MemFree不能代表全部可用的内存,这部分可回收的内存加上MemFree才是系统可用的内存,即:MemAvailable≈MemFree+Buffers+Cached,它是内核使用特定的算法估算出来的,并不精确。

4Buffers:39224 kB

内存中的临时存储元素,通常不超过 20 MB(temporary storage element in memory, which doesn’t generally exceed 20 MB)。

文件缓冲区的大小。

块设备(block device)所占用的特殊file-backed pages,包括:直接读写块设备,以及文件系统元数据(metadata)比如superblock使用的缓存页。Buffers内存页同时也在LRU list中,被统计在Active(file)或Inactive(file)之中。

5Cached:1400764 kB

页面缓存大小(从磁盘读取的文件的缓存),其中还包括 tmpfs 和 shmem,但不包括 SwapCached(page cache size (cache for files read from the disk), which also includes tmpfs and shmem but excludes SwapCached

被高速缓冲存储器(cache memory)使用的内存数量

Cached =  diskcache - SwapCache。

用户进程的内存页分为两种:file-backed pages(与文件对应的内存页),和anonymous pages(匿名页),比如进程的代码、映射的文件都是file-backed,而进程的堆、栈都是不与文件相对应的、就属于匿名页。file-backed pages在内存不足的时候可以直接写回对应的硬盘文件里,称为page-out,不需要用到交换区(swap);而anonymous pages在内存不足时就只能写到硬盘上的交换区(swap)里,称为swap-out。

6SwapCached:0 kB

最近使用的交换内存,可提高 I/O 的速度(recently used swap memory, which increases the speed of I/O)

被高速缓冲存储器(cache memory)使用的交换空间大小,已经被交换出来的内存,但仍然被存放在swapfile中。用来在需要的时候很快的被替换而不需要再次打开I/O端口。

SwapCached包含的是被确定要swap-out,但是尚未写入交换区的匿名内存页。

SwapCached内存页会同时被统计在LRU或AnonPages或Shmem中,它本身并不占用额外的内存。

7Active:86028 kB

最近使用的内存,不太适合回收用于新应用程序(memory that has been used more recently, not very suitable to reclaim for new applications)。

处于活跃状态中的缓冲或高速缓冲存储器页面文件的大小,除非非常必要否则不会被移作他用。

Active=Active(anon) + Active(file)。

LRU是一种内存页回收算法,Least Recently Used,最近最少使用。LRU认为,在最近时间段内被访问的数据在以后被再次访问的概率,要高于最近一直没被访问的页面。于是近期未被访问到的页面就成为了页面回收的第一选择。Linux kernel会记录每个页面的近期访问次数,然后设计了两种LRU list: active list 和 inactive list, 刚访问过的页面放进active list,长时间未访问过的页面放进inactive list,回收内存页时,直接找inactive list即可。另外,内核线程kswapd会周期性地把active list中符合条件的页面移到inactive list中。

8Inactive:1536020 kB

最近未使用的内存,更适合回收用于新应用程序(memory that hasn’t been used recently, more suitable to reclaim for new applications)。

处于非活跃状态中的缓冲或高速缓冲存储器页面文件的大小,可能被用于其他途径。

Inactive=Inactive(anon) + Inactive(file))

9Active(anon):244 kB处于活跃状态、与文件无关的内存(比如进程的堆栈,用malloc申请的内存)(anonymous pages),anonymous pages在发生换页时,是对交换区进行读/写操作。
10Inactive(anon):182156 kB处于非活跃状态、与文件无关的内存(比如进程的堆栈,用malloc申请的内存)
11Active(file):85784 kB处于活跃状态、与文件关联的内存(比如程序文件、数据文件所对应的内存页)(file-backed pages) File-backed pages在发生换页(page-in或page-out)时,是从它对应的文件读入或写出
12Inactive(file):1353864 kB处于非活跃状态、与文件关联的内存(比如程序文件、数据文件所对应的内存页)
13Unevictable0 kB

用户空间消耗的不可回收内存数量。因为种种原因无法回收(page-out)或者交换到swap(swap-out)的内存页。

Unevictable LRU list上是不能pageout/swapout的内存页,包括VM_LOCKED的内存页、SHM_LOCK的共享内存页(同时被统计在Mlocked中)、和ramfs。在unevictable list出现之前,这些内存页都在Active/Inactive lists上,vmscan每次都要扫过它们,但是又不能把它们pageout/swapout,这在大内存的系统上会严重影响性能,unevictable list的初衷就是避免这种情况的发生。

14Mlocked0 kB

被系统调用"mlock()"锁定到内存中的页面大小。

Mlocked页面是不可收回的。被锁定的内存因为不能pageout/swapout,会从Active/Inactive LRU list移到Unevictable LRU list上。

Mlocked与以下统计项重叠:LRU Unevictable,AnonPages,Shmem,Mapped等。

15SwapTotal0 kB交换空间的总大小
16SwapFree0 kB未被分配的交换空间大小
17Dirty96 kB

(memory that currently waits to be written back to the disk)

等待被写回到磁盘的内存大小。

Dirty并不包括系统中全部的dirty pages,需要再加上另外两项:NFS_Unstable 和 Writeback,NFS_Unstable是发给NFS server但尚未写入硬盘的缓存页,Writeback是正准备回写硬盘的缓存页。

18Writeback0 kB正在被写回到磁盘的内存大小。
19AnonPages179504 kB未映射页的内存大小
20Mapped215608 kB设备和文件等映射的大小
21Shmem336 kB共享内存和 tmpfs 文件系统使用的量
22KReclaimable123612 kB内核分配的内存,内存压力下可回收(包括 SReclaimable)
23Slab148076 kB内核数据结构缓存的大小,可以减少申请和释放内存带来的消耗
24SReclaimable123612 kB可收回Slab的大小
25SUnreclaim24464 kB不可收回Slab的大小(SUnreclaim+SReclaimable=Slab)
26KernelStack2912 kB内核栈,常驻内存,每一个用户线程都会分配一个kernel stack
27PageTables2984 kB管理内存分页页面的索引表的大小
28NFS_Unstable0 kBNFS_Unstable:已写入磁盘但尚未提交到稳定存储的网络文件系统页面,始终为零
29Bounce0 kB退回缓冲区的内存量,退回缓冲区是使设备能够复制和写入数据的低级内存区域
30WritebackTmp0 kBFUSE 模块使用的写回临时缓冲区
31CommitLimit1927976 kB当前可在系统上分配的数量。根据超额分配比率('vm.overcommit_ratio'),这是当前在系统上分配可用的内存总量,这个限制只是在模式2('vm.overcommit_memory')时启用。CommitLimit用以下公式计算:CommitLimit =('vm.overcommit_ratio'*物理内存)+交换例如,在具有1G物理RAM和7G swap的系统上,当`vm.overcommit_ratio` = 30时 CommitLimit =7.3G
32Committed_AS482236 kB目前已在系统上分配的内存量。是所有进程申请的内存的总和,即使所有申请的内存没有被完全使用,例如一个进程申请了1G内存,仅仅使用了300M,但是这1G内存的申请已经被 "committed"给了VM虚拟机,进程可以在任何时间使用。如果限制在模式2('vm.overcommit_memory')时启用,分配超出CommitLimit内存将不被允许
33VmallocTotal34359738367 kB用于分配几乎连续内存的 vmalloc 内存空间的总大小
34VmallocUsed16208 kB已用 vmalloc 内存空间的大小
35VmallocChunk0 kBvmalloc 内存的最大可用连续块
36Percpu1016 kB用于percpu接口分配的内存
37HardwareCorrupted0 kB内核发现已损坏的内存
38AnonHugePages104448 kB映射到页表中的匿名(非文件)大页面。Transparent Huge Pages 缩写 THP ,这个是 RHEL 6 开始引入的一个功能,在 Linux6 上透明大页是默认启用的。由于 Huge pages 很难手动管理,而且通常需要对代码进行重大的更改才能有效的使用,因此 RHEL 6 开始引入了 Transparent Huge Pages ( THP ), THP 是一个抽象层,能够自动创建、管理和使用传统大页。THP 为系统管理员和开发人员减少了很多使用传统大页的复杂性 , 因为 THP 的目标是改进性能 , 因此其它开发人员 ( 来自社区和红帽 ) 已在各种系统、配置、应用程序和负载中对 THP 进行了测试和优化。这样可让 THP 的默认设置改进大多数系统配置性能。但是 , 不建议对数据库工作负载使用 THP 。这两者最大的区别在于 : 标准大页管理是预分配的方式,而透明大页管理则是动态分配的方式。
39ShmemHugePages0 kB共享内存和具有大页面的 tmpfs 文件系统使用的量
40ShmemPmdMapped0 kB具有大页面的用户空间映射共享内存(userspace-mapped shared memory with huge pages)
41FileHugePages0 kB为大页面分配的页面缓存消耗的内存(memory consumed by page cache allocated with huge pages)
42FilePmdMapped0 kB在用户空间中分配了大页面的映射页面缓存
43DupText0 kB-
44MemZeroed0 kB-
45HugePages_Total0大页面池的总大小。Huge pages(标准大页) 是从 Linux Kernel 2.6 后被引入的,目的是通过使用大页内存来取代传统的 4kb 内存页面, 以适应越来越大的系统内存,让操作系统可以支持现代硬件架构的大页面容量功能。
46HugePages_Free0未分配的大页面数量
47HugePages_Rsvd0用于从池中分配的保留大页数,这保证了在发生意外行为时为进程分配
48HugePages_Surp0/proc/sys/vm/nr_hugepages中超过特定基值的剩余大页数(number of surplus huge pages above a specific base value in /proc/sys/vm/nr_hugepages)
49Hugepagesize2048 kB大页面的默认大小(the default size of huge pages)
50Hugetlb0 kB

为各种大小的大页面分配的内存总量(the total amount of memory allocated for huge pages of all sizes)。

DirectMap所统计的不是关于内存的使用,而是一个反映TLB效率的指标。TLB(Translation Lookaside Buffer)是位于CPU上的缓存,用于将内存的虚拟地址翻译成物理地址,由于TLB的大小有限,不能缓存的地址就需要访问内存里的page table来进行翻译,速度慢很多。为了尽可能地将地址放进TLB缓存,新的CPU硬件支持比4k更大的页面从而达到减少地址数量的目的, 比如2MB,4MB,甚至1GB的内存页,视不同的硬件而定。所以DirectMap其实是一个反映TLB效率的指标。

51DirectMap4k51896 kB内核映射的以 4 kB 页为单位的内存总量(the total amount of memory mapped by the kernel in 4 kB pages)
52DirectMap2M2945024 kB内核映射的以 2 MB 页为单位的内存总量(the total amount of memory mapped by the kernel in 2 MB pages)
53DirectMap1G1048576 kB内核映射的以1GB 页为单位的内存总量

 

 参考:1.The /proc/meminfo File in Linux | Baeldung on Linux

     2.linux内存占用分析之meminfo - 个人文章 - SegmentFault 思否 

    3.解释 Red Hat Enterprise Linux 的 /proc/meminfo 和 free 输出 - Red Hat Customer Portal

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/696949.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

每日复盘-20240607

今日关注: 这几天市场环境不好,一直空仓。 六日涨幅最大: ------1--------605258--------- 协和电子 五日涨幅最大: ------1--------605258--------- 协和电子 四日涨幅最大: ------1--------605258--------- 协和电子 三日涨幅最大: ------1--------0…

20240605解决飞凌的OK3588-C的核心板刷机原厂buildroot不能连接ADB的问题

20240605解决飞凌的OK3588-C的核心板刷机原厂buildroot不能连接ADB的问题 2024/6/5 13:53 rootrootrootroot-ThinkBook-16-G5-IRH:~/repo_RK3588_Buildroot20240508$ ./build.sh --help rootrootrootroot-ThinkBook-16-G5-IRH:~/repo_RK3588_Buildroot20240508$ ./build.sh lun…

24.6.9( 概率dp)

星期一: abc356 D atc传送门 思路:按位与操作,M的非零位对答案一定没有贡献,对M为1的位,考虑有多少k此位也为1 按位枚举,m此位为0跳…

require.context()函数介绍

业务需求&#xff1a; 前端Vue项目怎样读取src/assets目录下所有jpg文件 require.context()方法来读取src/assets目录下的所有.jpg文件 <template><div><img v-for"image in images" :src"image" :key"image" /></div> …

一篇文章搞定Java数组初始化,从此告别迷惑

哈喽&#xff0c;各位小伙伴们&#xff0c;你们好呀&#xff0c;我是喵手。运营社区&#xff1a;C站/掘金/腾讯云&#xff1b;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点&#xff0c;并以文字的形式跟大家一起交流&#xff0c;互相学习&#xff0c;一…

Java:集合框架

1.Collection接口 collection接口是Java最基本的集合接口&#xff0c;它定义了一组允许重复的对象。它虽然不能直接创建实例&#xff0c;但是它派生了两个字接口List和Set&#xff0c;可以使用子接口的实现类创建实例。Collection 接口是抽取List接口和Set接口共同的存储特点和…

2024.6.10学习记录

1、代码随想录二刷 2、项目难点 review 3、计组复习

6-Maven的使用

6-Maven的使用 常用maven命令 //常用maven命令 mvn -v //查看版本 mvn archetype:create //创建 Maven 项目 mvn compile //编译源代码 mvn test-compile //编译测试代码 mvn test //运行应用程序中的单元测试 mvn site //生成项目相关信息的网站 mvn package //依据项目生成 …

线程知识点总结

Java线程是Java并发编程中的核心概念之一&#xff0c;它允许程序同时执行多个任务。以下是关于Java线程的一些关键知识点总结&#xff1a; 1. 线程的创建与启动 继承Thread类&#xff1a;创建一个新的类继承Thread类&#xff0c;并重写其run()方法。通过创建该类的实例并调用st…

代码随想录算法训练营第三十二天| 122.买卖股票的最佳时机II,55. 跳跃游戏 ,45.跳跃游戏II

122. 买卖股票的最佳时机 II - 力扣&#xff08;LeetCode&#xff09; class Solution {public int maxProfit(int[] prices) {if(prices.length 0){return 0;}int min prices[0];int result 0;for(int i1;i<prices.length;i){if(prices[i] > min){result (prices[i]…

【SQL】牛客网SQL非技术入门40道代码|练习记录

跟着刷题&#xff1a;是橘长不是局长哦_哔哩哔哩_bilibili 6查询学校是北大的学生信息 select device_id, university from user_profile where university 北京大学 7查找年龄大于24岁的用户信息 select device_id, gender, age, university from user_profile where age…

【C++初阶学习】第十三弹——优先级队列及容器适配器

C语言栈&#xff1a;数据结构——栈(C语言版)-CSDN博客 C语言队列&#xff1a;数据结构——队列&#xff08;C语言版&#xff09;-CSDN博客 C栈与队列&#xff1a;【C初阶学习】第十二弹——stack和queue的介绍和使用-CSDN博客 前言&#xff1a; 在前面&#xff0c;我们已经…

使用 C# 学习面向对象编程:第 1 部分

介绍 C# 完全基于面向对象编程 (OOP)。首先&#xff0c;类是一组相似的方法和变量。在大多数情况下&#xff0c;类包含变量、方法等的定义。当您创建此类的实例时&#xff0c;它被称为对象。在此对象上&#xff0c;您可以使用定义的方法和变量。 步骤1. 创建名为“LearnClass…

⌈ 传知代码 ⌋ 记忆大师

&#x1f49b;前情提要&#x1f49b; 本文是传知代码平台中的相关前沿知识与技术的分享~ 接下来我们即将进入一个全新的空间&#xff0c;对技术有一个全新的视角~ 本文所涉及所有资源均在传知代码平台可获取 以下的内容一定会让你对AI 赋能时代有一个颠覆性的认识哦&#x…

从信号灯到泊车位,ARMxy如何重塑城市交通智能化

城市智能交通系统的高效运行对于缓解交通拥堵、提高出行安全及优化城市管理至关重要。ARMxy工业计算机&#xff0c;作为这一领域内的技术先锋&#xff0c;正以其强大的性能和灵活性&#xff0c;悄然推动着交通管理的智能化升级。 智能信号控制的精细化管理 想象一下&#xff0…

[发布]嵌入式系统远程测控软件-基于Qt

目录 一. 引言二. 软件功能2.1 原理2.2 软件功能2.3 运行环境 三. 软件操作使用3.1 软件界面3.2 软件功能使用详解3.2.1 连接3.2.2 数据监测3.2.3 数据修改3.2.4 数据保存 3.3 软件的硬件连接 四. 通信协议——STM32移植篇4.1 通信协议4.2 STM32如何传输浮点数4.3 简单移植&…

使用Redis的优势以及会引发的问题

优势 ①使用redis代表着高性能还有高并发&#xff0c;高性能很好理解&#xff0c;redis会缓存我们访问的数据。他是基于内存的&#xff0c;第一次访问数据库我们可能需要800ms&#xff0c;但是访问后如果使用redis进行缓存&#xff0c;第二次乃至后面访问相同的数据就只需要去…

嵌入式仪器模块:示波器模块和自动化测试软件

示波器模块 • 32 位分辨率 • 125 MSPS 采样率 • 支持单通道/双通道模块选择 • 低速模式可实现实时功率分布和整机功率检测 • 高速模式可实现信号分析和上电时序测量 应用场景 • 抓取并分析波形的周期、幅值、异常信号等指标 • 电源纹波与噪声分析 • 信号模板比…

档案数字化管理的工具有哪些

档案数字化管理的工具可以包括以下几种&#xff1a; 1. 扫描仪/数字拍摄仪&#xff1a;用于将纸质文件数字化为电子文件的工具。 2. OCR&#xff08;光学字符识别&#xff09;软件&#xff1a;用于将扫描或拍摄的图像文件转换为可编辑的文本文件。 3. 文件管理系统/专久智能电子…

RAG检索与生成的融合

1、rag定义 检索增强生成 (RAG) 模型代表了检索系统和生成模型两大不同但互补组件完美结合的杰作。通过无缝整合相关信息检索和生成与背景相关的响应&#xff0c;RAG模型在人工智能领域达到了前所未有的复杂程度。 2、rag工作流程 2.1、rag整体框架 query通过llm处理后&…