plt绘制雷达图

1、圆形

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.sans-serif']=['SimHei']     #显示中文
plt.rcParams['axes.unicode_minus']=False       #正常显示负号

def radar_map(data, label, cls):
    # 设置雷达图的角度,用于平分切开一个圆面
    n = len(label)
    angles = np.linspace(0, 2 * np.pi, n, endpoint=False)

    # 将折线图形进行封闭操作
    angle = np.concatenate((angles, [angles[0]]))
    data = np.concatenate((data, data[:, None, 0]), axis=1)
    label = np.concatenate((label, [label[0]]))

    # 绘图
    fig = plt.figure(figsize=(7, 7))
    ax = fig.add_subplot(111, polar=True)  # 参数polar, 以极坐标的形式绘制图形

    # 画线
    for i in range(len(data)):
        ax.plot(angle, data[i], 'o-', linewidth=2, label=cls[i])
        # ax.fill(angle, data[i], alpha=0.7)  # 填充底色

    ax.set_thetagrids(angle * 180 / np.pi, label)  # 添加属性标签
    ax.set_ylim(0, 100)  # 设置极轴的区间范围
    ax.set_theta_zero_location('N')  # 设置极坐标的起点(即0°)在正北方向,即相当于坐标轴逆时针旋转90°
    # ax.spines['polar'].set_visible(False)  # 不显示极坐标最外圈的圆
    # ax.set_yticks([])  # 不显示坐标间隔
    plt.grid(True, c='gray', linestyle='--')  # 设置网格线样式
    plt.title('示例', fontsize=12)  # 添加标题
    plt.legend(loc='lower right', bbox_to_anchor=(0.0, 0.0))  # 设置图例的位置,在画布外
    plt.show()

if __name__ == '__main__':
    # 要展示的指标
    label = np.array(['AA', 'OA', 'kappa', "PA", "UA"])

    # 每个数据的名字
    cls = np.array(['A_1', 'A_2', 'A_3', "A_4", "A_5"])

    # 数据
    data = np.array([[92.3, 95.1, 90.2, 65.2, 75.1],
                     [50.3, 65.2, 80.4, 90.2, 77.6],
                     [45.2, 55.3, 86.2, 45.2, 88.3],
                     [85.2, 65.3, 98.2, 47.2, 58.6],
                     [88.5, 95.3, 65.2, 84.5, 78.6]])

    # 绘制雷达图
    radar_map(data, label, cls)

2、多边形

import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['font.sans-serif']=['SimHei']     #显示中文
plt.rcParams['axes.unicode_minus']=False       #正常显示负号

def radar_map(data, label, cls):

    # 设置雷达图的角度,用于平分切开一个圆面
    n = len(label)
    angles = np.linspace(0, 2 * np.pi, n, endpoint=False)

    # 将折线图形进行封闭操作
    angle = np.concatenate((angles, [angles[0]]))
    data = np.concatenate((data, data[:,None,0]),axis=1)
    label = np.concatenate((label, [label[0]]))

    # 绘图
    fig = plt.figure(figsize=(7, 7))
    ax = fig.add_subplot(111, polar=True)  # 参数polar, 以极坐标的形式绘制图形

    # 画若干个多边形
    max_ = 105
    min_ = 0
    for i in np.arange(min_, max_, 20):
        ax.plot(angle, [i] * (n + 1), '--', lw=0.5, color='black')

    # 画线
    for i in range(len(data)):
        ax.plot(angle, data[i], 'o-', linewidth=2, label=cls[i])
        # ax.fill(angle, data[i], alpha=0.7)  # 填充底色

    # 绘制各个类别的数值
    # for i in range(len(data)):
    #     for angle_,data_ in zip(angle,data[i]):
            # ax.text(angle_, data_ + 5, '%.00f' % data_, ha='center', va='center', fontsize=10, color='black')

    # 画半径线
    for i in range(len(label[:-1])):
        ax.plot([angles[i], angles[i]], [0, 102], '--', lw=0.5, color='black')  # 画5条半径线,每个角度连接圆心0和顶点100

    ax.set_thetagrids(angle * 180 / np.pi, label)  # 添加属性标签
    """
    # 该两行代码,同ax.set_thetagrids(angle * 180 / np.pi, label)  # 添加属性标签
    ax.set_xticks(angle[:-1])  # 去除最后一个刻度
    ax.set_xticklabels(label[:-1])
    """
    # ax.set_ylim(0, 100)  # 设置极轴的区间范围
    ax.set_rlabel_position(0) # 设置网格间隔大小标签的角度
    ax.set_theta_zero_location('N')  # 设置极坐标的起点(即0°)在正北方向,即相当于坐标轴逆时针旋转90°
    ax.spines['polar'].set_visible(False)  # 不显示极坐标最外圈的圆
    ax.tick_params(pad=-2)  # 调整刻度标签与轴的距离
    # ax.set_yticklabels([20,40,60,80,100]) # 去除网格间隔的刻度标签。添加数字就是修改
    # ax.set_yticks([])  # 不显示坐标间隔。添加数字就是修改
    plt.grid(c='gray', linestyle='--')  # 设置网格样式
    plt.title('示例', fontsize=12) # 添加标题
    plt.legend(loc='lower right', bbox_to_anchor=(0.0, 0.0))  # 设置图例的位置,在画布外
    plt.show()

if __name__ == '__main__':

    # 要展示的指标
    label = np.array(['AA','OA','kappa',"PA","UA"])

    # 每个数据的名字
    cls = np.array(['A_1','A_2','A_3',"A_4","A_5"])

    # 数据
    data = np.array([[92.3,95.1,90.2,65.2,75.1],
                     [50.3,65.2,80.4,90.2,77.6],
                     [45.2,55.3,86.2,45.2,88.3],
                     [85.2,65.3,98.2,47.2,58.6],
                     [88.5,95.3,65.2,84.5,78.6]])

    # 绘制雷达图
    radar_map(data, label, cls)

3、官网例子

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Circle, RegularPolygon
from matplotlib.path import Path
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
from matplotlib.spines import Spine
from matplotlib.transforms import Affine2D


def radar_factory(num_vars, frame='circle'):
    """
    Create a radar chart with `num_vars` axes.

    This function creates a RadarAxes projection and registers it.

    Parameters
    ----------
    num_vars : int
        Number of variables for radar chart.
    frame : {'circle', 'polygon'}
        Shape of frame surrounding axes.

    """
    # calculate evenly-spaced axis angles
    theta = np.linspace(0, 2*np.pi, num_vars, endpoint=False)

    class RadarTransform(PolarAxes.PolarTransform):

        def transform_path_non_affine(self, path):
            # Paths with non-unit interpolation steps correspond to gridlines,
            # in which case we force interpolation (to defeat PolarTransform's
            # autoconversion to circular arcs).
            if path._interpolation_steps > 1:
                path = path.interpolated(num_vars)
            return Path(self.transform(path.vertices), path.codes)

    class RadarAxes(PolarAxes):

        name = 'radar'
        PolarTransform = RadarTransform

        def __init__(self, *args, **kwargs):
            super().__init__(*args, **kwargs)
            # rotate plot such that the first axis is at the top
            self.set_theta_zero_location('N')

        def fill(self, *args, closed=True, **kwargs):
            """Override fill so that line is closed by default"""
            return super().fill(closed=closed, *args, **kwargs)

        def plot(self, *args, **kwargs):
            """Override plot so that line is closed by default"""
            lines = super().plot(*args, **kwargs)
            for line in lines:
                self._close_line(line)

        def _close_line(self, line):
            x, y = line.get_data()
            # FIXME: markers at x[0], y[0] get doubled-up
            if x[0] != x[-1]:
                x = np.append(x, x[0])
                y = np.append(y, y[0])
                line.set_data(x, y)

        def set_varlabels(self, labels):
            self.set_thetagrids(np.degrees(theta), labels)

        def _gen_axes_patch(self):
            # The Axes patch must be centered at (0.5, 0.5) and of radius 0.5
            # in axes coordinates.
            if frame == 'circle':
                return Circle((0.5, 0.5), 0.5)
            elif frame == 'polygon':
                return RegularPolygon((0.5, 0.5), num_vars,
                                      radius=.5, edgecolor="k")
            else:
                raise ValueError("Unknown value for 'frame': %s" % frame)

        def _gen_axes_spines(self):
            if frame == 'circle':
                return super()._gen_axes_spines()
            elif frame == 'polygon':
                # spine_type must be 'left'/'right'/'top'/'bottom'/'circle'.
                spine = Spine(axes=self,
                              spine_type='circle',
                              path=Path.unit_regular_polygon(num_vars))
                # unit_regular_polygon gives a polygon of radius 1 centered at
                # (0, 0) but we want a polygon of radius 0.5 centered at (0.5,
                # 0.5) in axes coordinates.
                spine.set_transform(Affine2D().scale(.5).translate(.5, .5)
                                    + self.transAxes)
                return {'polar': spine}
            else:
                raise ValueError("Unknown value for 'frame': %s" % frame)

    register_projection(RadarAxes)
    return theta


def example_data():
    # The following data is from the Denver Aerosol Sources and Health study.
    # See doi:10.1016/j.atmosenv.2008.12.017
    #
    # The data are pollution source profile estimates for five modeled
    # pollution sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical
    # species. The radar charts are experimented with here to see if we can
    # nicely visualize how the modeled source profiles change across four
    # scenarios:
    #  1) No gas-phase species present, just seven particulate counts on
    #     Sulfate
    #     Nitrate
    #     Elemental Carbon (EC)
    #     Organic Carbon fraction 1 (OC)
    #     Organic Carbon fraction 2 (OC2)
    #     Organic Carbon fraction 3 (OC3)
    #     Pyrolyzed Organic Carbon (OP)
    #  2)Inclusion of gas-phase specie carbon monoxide (CO)
    #  3)Inclusion of gas-phase specie ozone (O3).
    #  4)Inclusion of both gas-phase species is present...
    data = [
        ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 'O3'],
        ('Basecase', [
            [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00],
            [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00],
            [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00],
            [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00],
            [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]]),
        ('With CO', [
            [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00],
            [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00],
            [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00],
            [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00],
            [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]]),
        ('With O3', [
            [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03],
            [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00],
            [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00],
            [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95],
            [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]]),
        ('CO & O3', [
            [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01],
            [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00],
            [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00],
            [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88],
            [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]])
    ]
    return data


if __name__ == '__main__':
    N = 9
    theta = radar_factory(N, frame='polygon')

    data = example_data()
    spoke_labels = data.pop(0)

    fig, axs = plt.subplots(figsize=(9, 9), nrows=2, ncols=2,
                            subplot_kw=dict(projection='radar'))
    fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)

    colors = ['b', 'r', 'g', 'm', 'y']
    # Plot the four cases from the example data on separate axes
    for ax, (title, case_data) in zip(axs.flat, data):
        ax.set_rgrids([0.2, 0.4, 0.6, 0.8])
        ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
                     horizontalalignment='center', verticalalignment='center')
        for d, color in zip(case_data, colors):
            ax.plot(theta, d, color=color)
            ax.fill(theta, d, facecolor=color, alpha=0.25, label='_nolegend_')
        ax.set_varlabels(spoke_labels)

    # add legend relative to top-left plot
    labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
    legend = axs[0, 0].legend(labels, loc=(0.9, .95),
                              labelspacing=0.1, fontsize='small')

    fig.text(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
             horizontalalignment='center', color='black', weight='bold',
             size='large')

    plt.show()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/69577.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】开源:abseil-cpp基础组件库配置使用

😏★,:.☆( ̄▽ ̄)/$:.★ 😏 这篇文章主要介绍abseil-cpp基础组件库配置使用。 无专精则不能成,无涉猎则不能通。——梁启超 欢迎来到我的博客,一起学习,共同进步。 喜欢的朋友可以关注一下&#…

途乐证券-最准确的KDJ改良指标?

KDJ目标是技术剖析的一种重要目标之一,它是利用随机目标(%R)发展而来的,是一种反映商场超买和超卖状况的买卖目标。KDJ目标由快线(K线)、慢线(D线)和随机值(J线&#xff…

LabVIEW开发分段反射器测试台

LabVIEW开发分段反射器测试台 随着对太空的观察需求越来越远,而不是当前技术(如哈勃望远镜)所能达到的,有必要增加太空望远镜主镜的尺寸。但是,增加主镜像的大小时存在几个问题。随着反射镜尺寸的增加,制造…

微服务与Nacos概述-3

流量治理 在微服务架构中将业务拆分成一个个的服务,服务与服务之间可以相互调用,但是由于网络原因或者自身的原因,服务并不能保证服务的100%可用,如果单个服务出现问题,调用这个服务就会出现网络延迟,此时…

章节5:脚本注入网页-XSS

章节5:脚本注入网页-XSS XSS :Cross Site Script 恶意攻击者利用web页面的漏洞,插入一些恶意代码,当用户访问页面的时候,代码就会执行,这个时候就达到了攻击的目的。 JavaScript、Java、VBScript、Activ…

Ajax 笔记(二)—— Ajax 案例

笔记目录 2. Ajax 综合案例2.1 案例一-图书管理2.1.1 渲染列表2.1.2 新增图书2.1.3 删除图书2.1.4 编辑图书 2.2 案例二-背景图的上传和更换2.2.1 上传2.2.2 更换 2.3 案例三-个人信息设置2.3.1 信息渲染2.3.2 头像修改2.2.3 信息修改2.3.4 提示框 Ajax 笔记: Ajax…

计算机网络:网络字节序

目录 一、字节序1.字节序概念2.字节序的理解(1)大端模式存储数据(2)小端模式存储数据 二、网络字节序 一、字节序 1.字节序概念 字节序:内存中存储多字节数据的顺序。 难道存储数据还要看顺序吗? yes。内…

程序猿成长之路之密码学篇-分组密码加密模式及IV(偏移量)的详解

Cipher.getInstance("AES/ECB/PKCS5Padding"); Cipher cipher Cipher.getInstance("AES/CBC/PKCS5Padding"); 在进行加解密编程的时候应该有很多小伙伴接触过以上的语句,但是大伙儿在编码过程中是否了解过ECB/CBC的含义、区别以及PKCS5Padding…

第三章 图论 No.8最近公共祖先lca, tarjan与次小生成树

文章目录 lcaTarjan板子题:1172. 祖孙询问lca或tarjan:1171. 距离356. 次小生成树352. 闇の連鎖 lca O ( m l o g n ) O(mlogn) O(mlogn),n为节点数量,m为询问次数,lca是一种在线处理询问的算法 自己也是自己的祖先 倍…

Effective Java笔记(30)优先考虑泛型方法

正如类可以从泛型中受益一般 ,方法也一样。静态工具方法尤其适合于泛型化 。 Collections 中的所有“算法”方法(例如 binarySearch 和 sort )都泛型化了 。 编写泛型方法与编写泛型类型相类似 。 例如下面这个方法,它返回两个集合…

使用next.js编写TodoList(连接了数据库)(提供源码)

准备 安装next可以查看nextjs入门使用_姚*鸿的博客的博客-CSDN博客 安装Prisma可以查看 使用Prisma访问数据库_姚*鸿的博客的博客-CSDN博客 确保你前面两个步骤做完。 再提醒以下记得修改数据库的信息: 源码地址 next-todolist: nextjs的todolist例子 效果演示 开始…

QT--崩溃原因分析

本文为学习记录,若有错误,请联系作者,谦虚受教。 文章目录 前言一、目的二、实现步骤1 add2line.exe2 分析文件3 crash文件 三、相关代码1 pro文件2.ccrashstack.h3.ccrashstack.cpp4.main.cpp 总结 前言 你从来来去自由,若你不想…

Unity游戏源码分享-塔防游戏保卫兔子的食物CarrotFantasy

Unity游戏源码分享-塔防游戏保卫兔子的食物CarrotFantasy 经典塔防游戏,可发布PC、Andoid、IOS、Web等 下载地址:https://download.csdn.net/download/Highning0007/88189987

系统架构设计专业技能 · 软件工程(一)【系统架构设计师】

系列文章目录 系统架构设计高级技能 软件架构概念、架构风格、ABSD、架构复用、DSSA(一)【系统架构设计师】 系统架构设计高级技能 系统质量属性与架构评估(二)【系统架构设计师】 系统架构设计高级技能 软件可靠性分析与设计…

​docker复现Nginx配置漏洞​

目录 1.docker环境搭建 2.复现过程 2.1CRLF(carriage return/line feed)注入漏洞 ​编辑 2.2.目录穿越 2.3.add_header覆盖 1.docker环境搭建 1.安装docker Debian系列 apt-get update apt-get install docker.io Redhat系列 yum install docker.io 2.下载并解压dock…

Do not access Object.prototype method ‘hasOwnProperty‘ from target object

调用 hasOwnProperty 报错:不要使用对象原型上的方法,因为原型的方法可能会被重写 if (this.formData.selectFields.hasOwnProperty(selectField)) {delete this.formData.selectFields[selectField];} else {this.formData.selectFields[selectField] …

Django快速入门

文章目录 一、安装1.创建虚拟环境(virtualenv和virtualenvwrapper)2. 安装django 二、改解释器三、创建一个Django项目四、项目目录项目同名文件夹/settings.py 五、测试服务器启动六、数据迁移七、创建应用八、基本视图1. 返回响应 response2. 渲染模板…

【01】基础知识:typescript安装及使用,开发工具vscode配置

一、typescript 了解 typeScript 是由微软开发的一款开源的编程语言。 typeScript 是 javascript 的超级,遵循最新的 es6、es5规范。 typeScript 扩展了 javaScript 的语法。 typeScript 更像后端 java、C# 这样的面向对象语言,可以让 js 开发大型企…

stm32项目(8)——基于stm32的智能家居设计

目录 一.功能设计 二.演示视频 三.硬件选择 1.单片机 2.红外遥控 3.红外探测模块 4.光敏电阻模块 5.温湿度检测模块 6.风扇模块 7.舵机 8.WIFI模块 9.LED和蜂鸣器 10.火焰传感器 11.气体传感器 四.程序设计 1.连线方式 2.注意事项 3.主程序代码 五.课题意义…

ffmpeg+intel核显实现硬解码

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、前言二、检查方法1.图形法2.nvidia-smi3.intel-gpu-tools 三、安装使用1.libva-dev2.libva-utils3.编译安装4.测试1.vainfo2.ffmpeg测试解码 总结 前言 之…