从反向传播过程看激活函数与权重初始化的选择对深度神经网络稳定性的影响

之前使用深度学习时一直对各种激活函数和权重初始化策略信手拈用,然而不能只知其表不知其里。若想深入理解为何选择某种激活函数和权重初始化方法卓有成效还是得回归本源,本文就从反向传播的计算过程来按图索骥。

为了更好地演示深度学习中的前向传播和反向传播,有必要图文结合,先按下面这个计算图造些数据。


在这里插入图片描述


这是一个输入只有单个样本、包含两个特征,两个隐藏层、分别带有2个神经元,以及一个输出的三层全连接神经网络。

输入和权重

输入 I n p u t Input Input (每行表示一个样本,每列表示一个特征)

X = [ x 1 , x 2 ] = [ 1 , − 1 ] X=[x_1,x_2]=[1,-1] X=[x1,x2]=[1,1]

标签 y = [ 1 ] y=[1] y=[1]

权重 W W W (每列对应一个神经元,行数等于样本特征数)

W 1 = [ w 1 w 3 w 2 w 4 ] = [ 1 − 1 − 2 1 ] \begin{align} W_1 & = \begin{bmatrix} w_1 & w_3 \\ w_2 & w_4 \\ \end{bmatrix} \hspace{100cm} \\ & = \begin{bmatrix} 1 & -1 \\ -2 & 1 \\ \end{bmatrix} \end{align} W1=[w1w2w3w4]=[1211]

W 2 = [ w 5 w 7 w 6 w 8 ] = [ 2 − 2 − 1 − 1 ] \begin{align} W_2 & = \begin{bmatrix} w_5 & w_7 \\ w_6 & w_8 \\ \end{bmatrix} \hspace{100cm} \\ & = \begin{bmatrix} 2 & -2 \\ -1 & -1 \\ \end{bmatrix} \end{align} W2=[w5w6w7w8]=[2121]

W 3 = [ w 9 w 11 w 10 w 12 ] = [ 3 − 1 − 1 4 ] \begin{align} W_3 & = \begin{bmatrix} w_9 & w_{11} \\ w_{10} & w_{12} \\ \end{bmatrix} \hspace{100cm} \\ & = \begin{bmatrix} 3 & -1 \\ -1 & 4 \\ \end{bmatrix} \end{align} W3=[w9w10w11w12]=[3114]

偏置 b b b (长度等于神经元数量)

b 1 = [ b 11 , b 12 ] = [ 1 , 0 ] b_1=[b_{11},b_{12}]=[1,0] b1=[b11,b12]=[1,0]

b 2 = [ b 21 , b 22 ] = [ 0 , 0 ] b_2=[b_{21},b_{22}]=[0,0] b2=[b21,b22]=[0,0]

b 3 = [ − 2 ] b_3=[-2] b3=[2]

前向传播过程

前向传播就是从输入经隐藏层到输出层的计算过程。

从输入到第一个隐藏层的计算

z 1 = w 1 ⋅ x 1 + w 2 ⋅ x 2 + b 11 = 4 z_1=w_1 · x_1 + w_2 · x_2 + b_{11}=4 z1=w1x1+w2x2+b11=4

z 2 = w 3 ⋅ x 1 + w 4 ⋅ x 2 + b 12 = − 2 z_2=w_3 · x_1 + w_4 · x_2 + b_{12}=-2 z2=w3x1+w4x2+b12=2

a 11 = σ ( z 1 ) = 0.9820 a_{11}=\sigma(z_1)=0.9820 a11=σ(z1)=0.9820

a 12 = σ ( z 2 ) = 0.1192 a_{12}=\sigma(z_2)=0.1192 a12=σ(z2)=0.1192

其中, σ = s i g m o i d = 1 1 + e − x \sigma=sigmoid={1 \over{1+e^{-x}}} σ=sigmoid=1+ex1 ,其导数为 σ ′ = s i g m o i d ∗ ( 1 − s i g m o i d ) = 1 1 + e − x − 1 ( 1 + e − x ) 2 \sigma'=sigmoid * (1 - sigmoid)={1 \over{1+e^{-x}}}-{1 \over{(1+e^{-x}})^2} σ=sigmoid(1sigmoid)=1+ex1(1+ex)21

隐藏层 H 1 = [ a 11 , a 12 ] H_1=[a_{11},a_{12}] H1=[a11,a12] ,作为第二个隐藏层的输入。

从第一个隐藏层到第二个隐藏层的计算

z 3 = w 5 ⋅ a 11 + w 6 ⋅ a 12 + b 21 = 1.8448 z_3=w_5 · a_{11} + w_6 · a_{12} + b_{21}=1.8448 z3=w5a11+w6a12+b21=1.8448

z 4 = w 7 ⋅ a 11 + w 8 ⋅ a 12 + b 22 = − 2.0832 z_4=w_7 · a_{11} + w_8 · a_{12} + b_{22}=-2.0832 z4=w7a11+w8a12+b22=2.0832

a 21 = σ ( z 3 ) = 0.8635 a_{21}=\sigma(z_3)=0.8635 a21=σ(z3)=0.8635

a 22 = σ ( z 4 ) = 0.1107 a_{22}=\sigma(z_4)=0.1107 a22=σ(z4)=0.1107

隐藏层 H 2 = [ a 21 , a 22 ] H_2=[a_{21},a_{22}] H2=[a21,a22] ,作为输出层的输入。

从第二个隐藏层到输出层的计算

y ^ = w 9 ⋅ a 21 + w 10 ⋅ a 22 + b 3 = 0.4798 \hat{y}=w_9 · a_{21} + w_{10} · a_{22} + b_{3}=0.4798 y^=w9a21+w10a22+b3=0.4798

一个样本的损失: L = ( y ^ − y ) 2 = y ^ 2 + y 2 − 2 y ^ y = 0.2706 L=(\hat{y}-y)^2=\hat{y}^2+y^2-2\hat{y}y=0.2706 L=(y^y)2=y^2+y22y^y=0.2706

计算结果如下:


在这里插入图片描述


反向传播过程

以求 w 1 w_1 w1 的偏导数为例,其他可仿照之,利用链式法则计算梯度。
∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ L ∂ z 1 = x 1 ∂ L ∂ z 1       ( 1 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial L \over \partial z_1} \hspace{100cm} \\ &=x_1 {\partial L \over \partial z_1} \ \ \ \ \ (1) \end{align} w1L=w1z1z1L=x1z1L     (1)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ∂ L ∂ a 11 = x 1 σ ′ ( z 1 ) ∂ L ∂ a 11       ( 2 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} {\partial L \over \partial a_{11}} \hspace{100cm} \\ &=x_1 \sigma'(z_1) {\partial L \over \partial a_{11}} \ \ \ \ \ (2) \end{align} w1L=w1z1z1a11a11L=x1σ(z1)a11L     (2)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ( ∂ z 3 ∂ a 11 ∂ L ∂ z 3 + ∂ z 4 ∂ a 11 ∂ L ∂ z 4 ) = x 1 σ ′ ( z 1 ) [ w 5 ∂ L ∂ z 3 + w 7 ∂ L ∂ z 4 ]       ( 3 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} ({\partial z_3 \over \partial a_{11}} {\partial L \over \partial z_{3}} + {\partial z_4 \over \partial a_{11}} {\partial L \over \partial z_{4}}) \hspace{100cm} \\ &=x_1 \sigma'(z_1) [w_5 {\partial L \over \partial z_{3}} + w_7 {\partial L \over \partial z_{4}}] \ \ \ \ \ (3) \end{align} w1L=w1z1z1a11(a11z3z3L+a11z4z4L)=x1σ(z1)[w5z3L+w7z4L]     (3)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ( ∂ z 3 ∂ a 11 ∂ a 21 ∂ z 3 ∂ L ∂ a 21 + ∂ z 4 ∂ a 11 ∂ a 22 ∂ z 4 ∂ L ∂ a 22 ) = x 1 σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) ∂ L ∂ a 21 + w 7 σ ′ ( z 4 ) ∂ L ∂ a 22 ]       ( 4 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} ({\partial z_3 \over \partial a_{11}} {\partial a_{21} \over \partial z_{3}} {\partial L \over \partial a_{21}} + {\partial z_4 \over \partial a_{11}} {\partial a_{22} \over \partial z_{4}} {\partial L \over \partial a_{22}}) \hspace{100cm} \\ &=x_1 \sigma'(z_1) [w_5 \sigma'(z_3) {\partial L \over \partial a_{21}} + w_7 \sigma'(z_4) {\partial L \over \partial a_{22}}] \ \ \ \ \ (4) \end{align} w1L=w1z1z1a11(a11z3z3a21a21L+a11z4z4a22a22L)=x1σ(z1)[w5σ(z3)a21L+w7σ(z4)a22L]     (4)

∂ L ∂ w 1 = ∂ z 1 ∂ w 1 ∂ a 11 ∂ z 1 ( ∂ z 3 ∂ a 11 ∂ a 21 ∂ z 3 ∂ y ^ ∂ a 21 ∂ L ∂ y ^ + ∂ z 4 ∂ a 11 ∂ a 22 ∂ z 4 ∂ y ^ ∂ a 22 ∂ L ∂ y ^ ) = x 1 σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) w 9 ∂ L ∂ y ^ + w 7 σ ′ ( z 4 ) w 10 ∂ L ∂ y ^ ]       ( 5 ) \begin{align} {\partial L \over \partial w_1} & = {\partial z_1 \over \partial w_1} {\partial a_{11} \over \partial z_1} ({\partial z_3 \over \partial a_{11}} {\partial a_{21} \over \partial z_{3}} {\partial \hat{y} \over \partial a_{21}} {\partial L \over \partial \hat{y}} + {\partial z_4 \over \partial a_{11}} {\partial a_{22} \over \partial z_{4}} {\partial \hat{y} \over \partial a_{22}} {\partial L \over \partial \hat{y}}) \hspace{100cm} \\ &=x_1 \sigma'(z_1) [w_5 \sigma'(z_3) w_9 {\partial L \over \partial \hat{y}} + w_7 \sigma'(z_4) w_{10} {\partial L \over \partial \hat{y}}] \ \ \ \ \ (5) \end{align} w1L=w1z1z1a11(a11z3z3a21a21y^y^L+a11z4z4a22a22y^y^L)=x1σ(z1)[w5σ(z3)w9y^L+w7σ(z4)w10y^L]     (5)

∂ L ∂ w 1 = x 1 σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) w 9 ∂ L ∂ y ^ + w 7 σ ′ ( z 4 ) w 10 ∂ L ∂ y ^ ] = 1 ∗ 0.0177 ∗ [ 2 ∗ 0.1179 ∗ 3 ∗ ( 2 y ^ − 2 y ) + ( − 2 ∗ 0.0985 ∗ − 1 ∗ ( 2 y ^ − 2 y ) ) ] = − 0.0166       ( 6 ) \begin{align} {\partial L \over \partial w_1} & = x_1 \sigma'(z_1) [w_5 \sigma'(z_3) w_9 {\partial L \over \partial \hat{y}} + w_7 \sigma'(z_4) w_{10} {\partial L \over \partial \hat{y}}] \hspace{100cm} \\ &=1*0.0177*[2*0.1179*3*(2 \hat{y}-2y) + (-2*0.0985*-1*(2 \hat{y}-2y))] \\ &=-0.0166 \ \ \ \ \ (6) \end{align} w1L=x1σ(z1)[w5σ(z3)w9y^L+w7σ(z4)w10y^L]=10.0177[20.11793(2y^2y)+(20.09851(2y^2y))]=0.0166     (6)

与pytorch计算结果相同。

import torch
from torch import nn

#输入与权重
X=torch.tensor([[1.0,-1.0]])
y=torch.tensor([1.0])
W1=torch.tensor([[1.0,-1.0],[-2.0,1.0]],requires_grad=True)
b1=torch.tensor([1.0,0.0],requires_grad=True)
W2=torch.tensor([[2.0,-2.0],[-1.0,-1.0]],requires_grad=True)
b2=torch.tensor([0.0,0.0],requires_grad=True)
W3=torch.tensor([[3.0],[-1.0]],requires_grad=True)
b3=torch.tensor([-2.0],requires_grad=True)

#隐藏层1
z1=torch.matmul(X,W1)+b1
a1=torch.sigmoid(z1) 

#隐藏层2
z2=torch.matmul(a1,W2)+b2
a2=torch.sigmoid(z2) 

#输出层
y_hat=torch.matmul(a2,W3)+b3

#损失函数
loss=nn.MSELoss(reduction='none')

#计算损失
L=loss(y_hat,y).sum()
L.backward()
print(W1.grad)

在这里插入图片描述


要想求 ∂ L ∂ w 1 {\partial L \over \partial w_1} w1L ,我们先看式 ( 1 ) (1) (1) ∂ z 1 ∂ w 1 {\partial z_1 \over \partial w_1} w1z1 是可以立刻得出的,因为它就是 w 1 w_1 w1 前面连接的输入的值。实际上对于任何权重,其偏导数 ∂ w {\partial w} w 表达式的第一项都是可以通过其连接的输入立刻获得(即利用前向传播过程中存储的每个神经元的中间结果),比如对于靠后的 w 9 w_9 w9 ,其输入为 a 21 a_{21} a21 ,展开得:

a 21 = σ [ w 5 ⋅ σ ( w 1 ⋅ x 1 + w 2 ⋅ x 2 + b 11 ) + w 6 ⋅ σ ( w 3 ⋅ x 1 + w 4 ⋅ x 2 + b 12 ) + b 21 ] a_{21}=\sigma[w_5 · \sigma(w_1 · x_1 + w_2 · x_2 + b_{11}) + w_6 · \sigma(w_3 · x_1 + w_4 · x_2 + b_{12}) + b_{21}] a21=σ[w5σ(w1x1+w2x2+b11)+w6σ(w3x1+w4x2+b12)+b21]

a 21 a_{21} a21 σ ( W 2 σ ( W 1 X + b 1 ) + b 2 )       ( 7 ) \sigma(W_2 \sigma(W_1X+b1)+b2) \ \ \ \ \ (7) σ(W2σ(W1X+b1)+b2)     (7) 结果其中之一。

可以看出,每一部分都会经激活函数,而对于 s i g m o i d sigmoid sigmoid 激活函数来说,第一项的计算可能会是无穷小,因此可能会引发梯度消失问题,而使用Relu则可以 减轻困扰以往神经网络的梯度消失问题。


在这里插入图片描述

sigmoid图像

在这里插入图片描述

Relu图像

继续回到对 ∂ L ∂ w 1 {\partial L \over \partial w_1} w1L 的讨论上。现在还要求 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L ,那么 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L 如何求解呢?这就是反向传播要解决的问题了。

我们再回看一下式 ( 2 ) − ( 5 ) (2)-(5) (2)(5) 中的 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L ,列示如下:

∂ L ∂ z 1 = σ ′ ( z 1 ) ∂ L ∂ a 11 {\partial L \over \partial z_1} = \sigma'(z_1) {\partial L \over \partial a_{11}} z1L=σ(z1)a11L

∂ L ∂ z 1 = σ ′ ( z 1 ) [ w 5 ∂ L ∂ z 3 + w 7 ∂ L ∂ z 4 ] {\partial L \over \partial z_1} = \sigma'(z_1) [w_5 {\partial L \over \partial z_{3}} + w_7 {\partial L \over \partial z_{4}}] z1L=σ(z1)[w5z3L+w7z4L]

∂ L ∂ z 1 = σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) ∂ L ∂ a 21 + w 7 σ ′ ( z 4 ) ∂ L ∂ a 22 ] {\partial L \over \partial z_1} = \sigma'(z_1) [w_5 \sigma'(z_3) {\partial L \over \partial a_{21}} + w_7 \sigma'(z_4) {\partial L \over \partial a_{22}}] z1L=σ(z1)[w5σ(z3)a21L+w7σ(z4)a22L]

∂ L ∂ z 1 = σ ′ ( z 1 ) [ w 5 σ ′ ( z 3 ) w 9 ∂ L ∂ y ^ + w 7 σ ′ ( z 4 ) w 10 ∂ L ∂ y ^ ] {\partial L \over \partial z_1} = \sigma'(z_1) [w_5 \sigma'(z_3) w_9 {\partial L \over \partial \hat{y}} + w_7 \sigma'(z_4) w_{10} {\partial L \over \partial \hat{y}}] z1L=σ(z1)[w5σ(z3)w9y^L+w7σ(z4)w10y^L]

可以看出,从前往后计算 ∂ L ∂ z 1 {\partial L \over \partial z_1} z1L 会不太容易,因为前面项总会依赖后面项的计算结果,所以得先一直往后计算。

但反过来就简单多了,我们可以从最后一项出发,对于最初的计算图,最后一项是输出值关于损失的导数 ∂ L ∂ y ^ {\partial L \over \partial \hat{y}} y^L ,这个可以由确定的损失函数求得。

有了 ∂ L ∂ y ^ {\partial L \over \partial \hat{y}} y^L ,可以通过 w 9 、 w 10 w_9、w_{10} w9w10 求得 ∂ L ∂ a 21 、 ∂ L ∂ a 22 {\partial L \over \partial a_{21}}、 {\partial L \over \partial a_{22}} a21La22L

有了 ∂ L ∂ a 21 、 ∂ L ∂ a 22 {\partial L \over \partial a_{21}}、 {\partial L \over \partial a_{22}} a21La22L ,可以通过 w 5 、 w 7 w_5、w_7 w5w7 求得 ∂ L ∂ a 11 {\partial L \over \partial a_{11}} a11L (别忘了中间还要乘以一个 $\sigma’(z) $ , z z z 只是一个常量,也可以从前向传播存储的中间结果获得) 。

再回味一下上面这个从后往前的计算过程,是不是跟前向传播很相似?这就是梯度的反向传播!与前向传播的图示比对如下:


在这里插入图片描述

反向传播

在这里插入图片描述

前向传播

其中:

∂ L ∂ a 21 = w 9 ∂ L ∂ y ^       ( 8 ) {\partial L \over \partial a_{21}}=w_9 {\partial L \over \partial \hat{y}} \ \ \ \ \ (8) a21L=w9y^L     (8)

∂ L ∂ a 22 = w 10 ∂ L ∂ y ^       ( 9 ) {\partial L \over \partial a_{22}}=w_{10} {\partial L \over \partial \hat{y}} \ \ \ \ \ (9) a22L=w10y^L     (9)

∂ L ∂ a 11 = w 5 ∂ L ∂ z 3 + w 7 ∂ L ∂ z 4       ( 10 ) {\partial L \over \partial a_{11}}=w_5 {\partial L \over \partial z_{3}} + w_7 {\partial L \over \partial z_{4}} \ \ \ \ \ (10) a11L=w5z3L+w7z4L     (10)

∂ L ∂ z 3 = σ ′ ( z 3 ) ∂ L ∂ a 21 {\partial L \over \partial z_{3}}=\sigma'(z_3) {\partial L \over \partial a_{21}} z3L=σ(z3)a21L

∂ L ∂ z 4 = σ ′ ( z 4 ) ∂ L ∂ a 22 {\partial L \over \partial z_{4}}=\sigma'(z_4) {\partial L \over \partial a_{22}} z4L=σ(z4)a22L

∂ L ∂ z 1 = σ ′ ( z 1 ) ∂ L ∂ a 11 {\partial L \over \partial z_{1}}=\sigma'(z_1) {\partial L \over \partial a_{11}} z1L=σ(z1)a11L

这个计算过程和前向传播很类似(尤其是式 ( 10 ) (10) (10) ),所以称之为反向传播。

从式 ( 5 ) 、 ( 7 ) (5)、(7) (5)(7) 可以看出,每个权重的偏导数都会涉及到一连串 w w w 与激活函数导数的乘积以及权重与输入的乘积,试想,如果没有一个良好初始化的权重,这么多 w w w 相乘很可能会引起梯度爆炸或梯度消失等参数不稳定问题。

比如方差为1的正态随机矩阵和一个初始权重矩阵相乘,会引起梯度爆炸:

W = torch.normal(0, 1, size=(5,5)) 
print('初始权重矩阵 \n',W) 
for i in range(100):
    W = torch.matmul(W,torch.normal(0, 1, size=(5, 5)))

print('100个矩阵相乘后 \n', W)

在这里插入图片描述


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/694441.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

网站调用Edge浏览器API:https://api-edge.cognitive.microsofttranslator.com/translate

Edge浏览器有自带的翻译功能,在运行pc项目可能会遇到疯狂调用Edge的API https://api-edge.cognitive.microsofttranslator.com/translate 这个URL(https://api-edge.cognitive.microsofttranslator.com/translate)指向的是微软服务中的API接…

单片机数码管时钟电路的设计

5 调试 数码管的引脚1~4,a~g以及小数点的排列都不是连续的,这就意味着难免需要飞线。数码管是分共阴和共阳的,起初我错把原理图中的共阳数码管当成了共阴数码管,焊上去了之后才发现,为了避免拆卸…

手写mybatis-预编译前的sql语句

sql表 mybatis数据库中的gxa_user表 /*Navicat Premium Data TransferSource Server : rootSource Server Type : MySQLSource Server Version : 80028Source Host : localhost:3306Source Schema : mybatisTarget Server Type : MySQLTarget…

C++ Easyx案例实战:Cookie Maker工作室1.0V

前言 //制作属于自己的工作室! 注:运行效果以及下载见Cookie Maker 工作室成立程序。 关于Cookie Maker工作室成立的信息,I am very happy(唔……改不过来了)。 OKOK,第一次用图形库写程序(图形…

一分钟有60秒,这个有趣的原因你知道吗?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

【JavaEE】Spring IoCDI详解

一.基本概念 1.Ioc基本概念 Ioc: Inversion of Control (控制反转), 也就是说 Spring 是⼀个"控制反转"的容器. 什么是控制反转呢? 也就是控制权反转. 什么的控制权发发了反转? 获得依赖对象的过程被反转了也就是说, 当需要某个对象时, 传统开发模式中需要自己通…

minio的一个基础使用案例:用户头像上传

文章目录 一、minio下载安装(Windows)二、案例需求分析三、后端接口开发 一、minio下载安装(Windows) 1. 下载minio服务端和客户端 minio下载地址 2. 手动搭建目录 /minio/binmc.exeminio.exe/data/logs手动创建minio应用程序目…

66. UE5 RPG 实现远程攻击武器配合角色攻击动画

在制作游戏中,我们制作远程攻击角色,他们一般会使用弓箭,弩,弹弓等武器来进行攻击。比如你使用弓箭时,如果角色在播放拉弓弦的动画,但是弓箭武器没有对应的表现,会显得很突兀。所以,…

GDPU Java 天码行空15 数据库编程

一、实验目的 1、 了解数据库的基础知识。 2、 掌握MySQL的下载、安装与配置。 3、 掌握MySQL可视化工具的使用。 4、 了解SQL语言。 5、 掌握JDBC中的API,并能进行简单的数据库操作。 二、实验内容 1、 安装MySQL 👨‍🏫 视频教程 2、建…

私有云和多云管理平台 | Cloudpods v3.11.4 正式发布

本次 3.11.4 更新亮点为:系统镜像引入社区镜像,用户可以一键导入各主流开源操作系统镜像,方便用户上手使用。持续迭代共享 LVM,支持快照,主备机等特性,修复迁移删除镜像缓存等 BUG。 功能优化 【费用】费…

linux动态调试 dev_dbg

动态调试使用方法 打开内核动态调试开关,make menuconfig选中CONFIG_DYNAMIC_DEBUG以及CONFIG_DEBUG_FS Linux启动后,使用命令行挂载上dbgfs 1. mkdir /mnt/dbg 2. mount -t debugfs none /mnt/dbg 1.控制某个文件所有dev_dbg(), echo -n &q…

mongodb总概

一、mongodb概述 mongodb是最流行的nosql数据库,由C语言编写。其功能非常丰富,包括: 面向集合文档的存储:适合存储Bson(json的扩展)形式的数据;格式自由,数据格式不固定,生产环境下修改结构都可以不影响程序运行;强大的查询语句…

MSPM0l1306——配置滴答定时器

我们配置好了滴答定时器之后,还要手动编写滴答定时器的中断服务函数,因为我们开启的滴答定时器的中断,当滴答定时器的计数值从我们设置的值减到0时,就会触发一次中断,触发中断就会执行中断服务函数。各个中断的中断服务…

144、二叉树的前序递归遍历

题解: 递归书写三要素: 1)确定递归函数的参数和返回值。要确定每次递归所要用到的参数以及需要返回的值 2)确定终止条件。操作系统也是用栈的方式实现递归,那么如果不写终止条件或者终止条件写的不对,都…

Here Doucument

一、Here Document概述 1.概念 使用I/0重定向的方式将命令列表提供给交互式程序 标准输入的一种替代品 2.语法格式 命令 <<标记 标记 3.注意事项 标记可以使用任意合法字符&#xff08;通常为EOF&#xff09; 结尾的标记一定要顶格写&#xff0c;前面不能有任何字符…

【iOS】内存泄漏检查及原因分析

目录 为什么要检测内存泄漏&#xff1f;什么是内存泄漏&#xff1f;内存泄漏排查方法1. 使用Zombie Objects2. 静态分析3. 动态分析方法定位修改Leaks界面分析Call Tree的四个选项&#xff1a; 内存泄漏原因分析1. Leaked Memory&#xff1a;应用程序未引用的、不能再次使用或释…

Java数据结构准备工作---常用类

文章目录 前言1.包装类1.1.包装类基本知识1.2.包装类的用途1.3.装箱和拆箱1.3.1.装箱&#xff1a;1.3.2.拆箱 1.4 包装类的缓存问题 2.时间处理类2.1.Date 时间类(java.util.Date)2.2.DateFormat 类和 SimpleDateFormat 类2.3.Calendar 日历类 3.其他常用类3.1.Math类3.2.Rando…

嵌入式中C语言经典的面试题分享

#error的作用是什么? #error 指令让预处理器发出一条错误信息,并且会中断编译过程。下面我们从Linux代码中抽取出来一小段代码并做修改得到示例代码: 这段示例代码很简单,当RX_BUF_IDX宏的值不为0~3时,在预处理阶段就会通过 #error 指令输出一条错误提示信息: "…

Python 很好用的爬虫框架:Scrapy:

了解Scrapy 爬虫框架的工作流程&#xff1a; 在scrapy中&#xff0c; 具体工作流程是这样的&#xff1a; 首先第一步 当爬虫引擎<engine>启动后&#xff0c; 引擎会到 spider 中获取 start_url<起始url> 然后将其封装为一个request对象&#xff0c; 交给调度器<…

文心一言 VS 讯飞星火 VS chatgpt (277)-- 算法导论20.3 4题

四、如果调用 vEB-TREE-INSERT 来插入一个已包含在 vEB 树中的元素&#xff0c;会出现什么情况&#xff1f;如果调用 vEB-TREE-DELETE 来删除一个不包含在 vEB 树中的元素&#xff0c;会出现什么情况&#xff1f;解释这些函数为什么有相应的运行状况&#xff1f;怎样修改 vEB 树…