堆排序讲解

前言

在讲堆的删除时,我们发现一步一步删除堆顶的数据,排列起来呈现出排序的规律,所以本节小编将带领大家进一步理解堆排序。

1.堆排序概念

那么什么是堆排序?

堆排序(Heap Sort)是一种基于堆数据结构的排序算法。它利用堆的性质(大堆或小堆)进行排序操作。堆排序的基本思想是通过构建堆,将待排序的数组转化为一个符合堆性质的堆结构,然后不断将堆顶元素与堆的最后一个元素进行交换,并调整堆,使剩余元素继续满足堆的性质。重复这个过程,直到整个数组有序。

堆排序的步骤如下:

  1. 构建大堆或小堆:将待排序的数组视为一个完全二叉树,通过从最后一个非叶子节点开始,依次对每个节点进行向下调整(Adjustdown)操作,构建出一个大堆或小堆。这个过程确保了堆的性质:对于大堆,父节点的值大于等于其子节点的值;对于小堆,父节点的值小于等于其子节点的值。
  2. 排序:交换堆顶元素(最大值或最小值)与堆的最后一个元素,并将堆的大小减一。然后对堆顶元素进行向下调整,使剩余元素继续满足堆的性质。重复这个过程,直到堆的大小为1,即所有元素都已经排好序。(运用堆删除的思想
  3. 得到排序结果:经过上述步骤,数组中的元素就按照升序(从小到大)或降序(从大到小)排列了。

堆排序的时间复杂度为 O(nlogn),其中 n 是待排序数组的大小。它具有原地排序的特点,不需要额外的存储空间。

堆排序的优点是稳定性较好,适用于大规模数据的排序。然而,堆排序的缺点是相对较慢,尤其在快速排序等其他排序算法的应用场景中,堆排序的性能可能不如其他算法。

2.堆的建立方法

2.1向下调整建立堆(补充)

在这里,堆的建立有两种,在二叉树的顺序结构中提到一种建堆的方法,通过尾插再进行向上调整,不过时间复杂度为O(N*logN),这里提供新的建堆方法,通过向下调整法,时间复杂度为O(N),不过再用此调整方法时,左右子树要是堆的结构。即从倒数的第一个非叶子结点的子树开始调整,一直调整到根结点的树,就可以调整成堆。

假设给一个数组 int a[]={4,2,8,1,5,6,9,7,2,7,9},通过向下调整法制造大堆。

2.2向上调整法

通过比较新插入元素与其父节点的值来判断是否需要进行交换。如果新插入元素的值大于父节点的值,就将它们进行交换,并更新索引值。这样,逐步向上调整,直到新插入元素找到了合适的位置,保证了堆的性质。

//向上调整
void Adjustup(Datatype* a,int child) {
	int parent = (child - 1) / 2;
	while (child > 0) {
		if (a[child] > a[parent]) {
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
	}
}

2.3建堆时间复杂度分析

1.向下调整法

void Adjustdown(Datatype* a, int n, int parent) {
	//假设法,假设左孩子大
	int child = parent * 2 + 1;
	
	while (child < n ) {
		if (child + 1 < n && a[child + 1] > a[child])
			child = child + 1;
		if (a[child] > a[parent]) {
			Swap(&a[child], &a[parent]);
		    parent = child;
		    child = parent * 2 + 1;
	}
		else break;
		
	}
}

2.向上调整法
向上调整法每层节点向上调整次数就是乘以层数
//向上调整
void Adjustup(Datatype* a,int child) {
	int parent = (child - 1) / 2;
	while (child > 0) {
		if (a[child] > a[parent]) {
			Swap(&a[child], &a[parent]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
	}
}

注意:上述代码都是采用建大堆的代码,建小堆把部分大于符号改成小于。
因此向下调整法实质上是节点数少的层,调整次数越多,向上调整是节点数越多,调整次数越多。

3.排序建堆选择

升序:建大堆
降序:建小堆
每次将堆首元素与尾元素交换,然后向下调整,每交换一次,堆的大小要减一,因为我们是每次将最大或者最小的元素依次交换堆后面。
例如升序的一个过程如下图:
void HeapSort(int* a, int n)
{
	//降序,建小堆
	// 升序,建大堆
	//for (int i = 1; i < n; i++)
	//{
	//	Adjustup(a, i);
	//}
	for (int i = (n - 1 - 1) / 2; i >= 0; i--)
	{
		Adjustdown(a, n, i);
	}

	int end = n - 1;
	while (end > 0)
	{
		Swap(&a[0], &a[end]);
		Adjustdown(a, end, 0);
		--end;
	}
}

void TestHeap2()
{
	int a[] = {20,17,16,5,3,4 };
	HeapSort(a, sizeof(a) / sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); i++) {
		printf("%d ", a[i]);
	}
}

4.TOP-K问题

TOP-K 问题:即求数据结合中前 K 个最大的元素或者最小的元素,一般情况下数据量都比较大
比如:专业前 10 名、世界 500 强、富豪榜、游戏中前 100 的活跃玩家等。
对于 Top-K 问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了 ( 可能数据都不能一下子全部加载到内存中) 。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前 K 个元素来建堆
前k个最大的元素,则建小堆
前k个最小的元素,则建大堆
2. 用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余 N-K 个元素依次与堆顶元素比完之后,堆中剩余的 K 个元素就是所求的前 K 个最小或者最大的元素。
假如求一堆数中的前k个最小的数,则建大堆。
这里我们采用随机数来生成100个随机数,然后存入一个动态数组中,然后选出前10个最小的数。
void PrintTopK(int* a, int n, int k)
{
	// 1. 建堆--用a中前k个元素建堆
	for (int i = (k - 1 - 1) / 2; i >= 0; i--) {
		Adjustdown(a, k, i);
	}
	// 2. 将剩余n-k个元素依次与堆顶元素交换,不满则则替换
	for (int j = n - k; j < n; j++) {
		if (a[j] < a[0]) {
			a[0] = a[j];
			Adjustdown(a, k, 0);
		}
	}
	printf("最小前%d个数:", k);
	for (int i = 0; i < k; i++) {
		printf("%d ", a[i]);
	}
}
void TestTopk()
{
	int n = 100;
	int* a = (int*)malloc(sizeof(int) * n);
	srand(time(0));
	for (size_t i = 0; i < n; ++i)
	{
		a[i] = rand() % 100;
	}
	PrintTopK(a, n, 10);
	}

本节内容到此结束,谢谢各位友友的捧场,下节小编将带领大家继续了解二叉树的链式存储结构!!!

留下三连和评论吧!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/693525.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JS-Fetch

Fetch 是一种用于进行网络请求的现代 JavaScript API。它提供了一种简单、灵活且功能强大的方式&#xff0c;用于从服务器获取资源并处理响应。 Fetch API 在浏览器中原生支持&#xff0c;并且以 Promise 为基础&#xff0c;使得异步请求更加直观和易用。使用 Fetch API&#…

C++ Qt实现http url启动本地应用程序

更多Qt文章,请访问《深入浅出C++ Qt开发技术专栏》:https://blog.csdn.net/yao_hou/category_9276099.html 文章目录 1、注册自定义协议2、编写web页面3、编写C++应用程序我们在使用腾讯会议时经常会通过http链接打开本地的腾讯会议,例如下图: 打开会议发起人给的链接,会出…

C语言小例程10/100

题目&#xff1a;要求输出国际象棋棋盘。 程序分析&#xff1a;国际象棋棋盘由64个黑白相间的格子组成&#xff0c;分为8行*8列。用i控制行&#xff0c;j来控制列&#xff0c;根据ij的和的变化来控制输出黑方格&#xff0c;还是白方格。 #include<stdio.h>int main() {…

Elasticsearch:ES|QL 查询 TypeScript 类型(二)

在我之前的文章 “Elasticsearch&#xff1a;ES|QL 查询 TypeScript 类型&#xff08;一&#xff09;”&#xff0c;我们讲述了如何在 Nodejs 里对 ES|QL 进行查询。在今天的文章中&#xff0c;我们来使用一个完整的例子来进行详细描述。更多有关如何使用 Nodejs 来访问 Elasti…

【马琴绿绮】马维衡古琴之马氏汉风 明代杉木制;周身髹朱红色漆

【马琴绿绮式】马维衡古琴之马氏汉风 明代杉木制&#xff1b;琴体周身髹朱红色漆&#xff0c;鹿角霜灰胎&#xff1b;形体壮硕、风格高古&#xff1b;音色松透、浑厚&#xff0c;音质纯净&#xff0c;按弹舒适&#xff0c;手感丝滑。

AI视频教程下载:如何用ChatGPT来求职找工作?

这是一个关于使用ChatGPT找工作的课程&#xff0c;作者分享了自己的求职经验和技巧&#xff0c;介绍了如何使用人工智能来改进个人资料和简历&#xff0c;以及如何研究公司和面试。通过细节处理职业目标、分享个人兴趣和技能、寻求导师和专业发展机会&#xff0c;以及在行业内建…

LLVM Cpu0 新后端 系列课程总结

想好好熟悉一下llvm开发一个新后端都要干什么&#xff0c;于是参考了老师的系列文章&#xff1a; LLVM 后端实践笔记 代码在这里&#xff08;还没来得及准备&#xff0c;先用网盘暂存一下&#xff09;&#xff1a; 链接: https://pan.baidu.com/s/1yLAtXs9XwtyEzYSlDCSlqw?…

状态方程ABCD矩阵如何确定例子

状态方程ABCD矩阵如何确定 确定状态空间表示中的状态矩阵A、输入矩阵 B、输出矩阵C 和直通矩阵D,需要从系统的动力学方程出发,并将其转换为状态方程的形式。我们可以通过一个具体的物理系统(如倒立摆系统)来说明这一过程 例子:倒立摆系统 系统描述 考虑一个倒立摆系统…

车用柴油氧化安定性检测 GB 19147-2009全项检测

柴油分为轻柴油&#xff08;沸点范围约180-370℃&#xff09;和重柴油&#xff08;沸点范围约350-410℃&#xff09;两大类。柴油使用性能中最重要的是着火性和流动性&#xff0c;其技术指标分别为十六烷值和凝点&#xff0c;我国柴油现行规格中要求含硫量控制在0.5%-1.5%。 检…

Linxu: Dynamic debug 简介

文章目录 1. 前言2. 什么是 Dynamic debug (dyndbg) ?3. Dynamic debug (dyndbg) 的使用3.1 开启 Dynamic debug (dyndbg) 功能3.2 使用 Dynamic debug (dyndbg) 功能 4. Dynamic debug (dyndbg) 的实现4.1 内核接口 dynamic_pr_debug() 的实现4.2 debugfs 导出控制节点 contr…

stm32中外部中断控制Led亮灭

说明&#xff1a;外部中断的方式通过按键来实现&#xff0c;stm32的配置为江科大stm32教程中的配置。 1.内容&#xff1a; 通过中断的方式&#xff0c;按下B15按键Led亮&#xff0c;按下B13按键Led灭。 2.硬件设计&#xff1a; 3.代码&#xff1a; 3.1中断底层 EXTI.c #i…

Apple - Quartz 2D Programming Guide

本文翻译自&#xff1a;Quartz 2D Programming Guide&#xff08;更新时间&#xff1a;2017-03-21 https://developer.apple.com/library/archive/documentation/GraphicsImaging/Conceptual/drawingwithquartz2d/Introduction/Introduction.html#//apple_ref/doc/uid/TP300010…

高考之后第一张大流量卡应该怎么选?

高考之后第一张大流量卡应该怎么选&#xff1f; 高考结束后&#xff0c;选择一张合适的大流量卡对于准大学生来说非常重要&#xff0c;因为假期期间流量的使用可能会暴增。需要综合考虑多个因素&#xff0c;以确保选到最适合自己需求、性价比较高且稳定的套餐。以下是一些建议…

Mysql(一):深入理解Mysql索引底层数据结构与算法

众所众知&#xff0c;MySql的查询效率以及查询方式&#xff0c;基本上和索引息息相关&#xff0c;所以&#xff0c;我们一定要对MySql的索引有一个具体到数据底层上的认知。 这一次也是借着整理的机会&#xff0c;和大家一起重新复习一下MySql的索引底层。 本节也主要有一下的…

电脑缺失msvcp110.dll文件的解决方法,总结5种靠谱的方法

在计算机使用过程中&#xff0c;我们可能会遇到一些错误提示&#xff0c;其中之一就是“找不到msvcp110.dll”。这个错误提示通常出现在运行某些软件时&#xff0c;那么&#xff0c;它究竟会造成哪些问题呢&#xff1f; 一&#xff0c;msvcp110.dll文件概述 msvcp110.dll是Mic…

【二叉树】Leetcode 103. 二叉树的锯齿形层序遍历【中等】

二叉树的锯齿形层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 锯齿形层序遍历 。&#xff08;即先从左往右&#xff0c;再从右往左进行下一层遍历&#xff0c;以此类推&#xff0c;层与层之间交替进行&#xff09;。 示例 1&#xff1a; 输入&#xff1a;roo…

vite常识性报错解决方案

1.导入路径不能以“.ts”扩展名结束。考虑改为导入“xxx.js” 原因&#xff1a;当你尝试从一个以 .ts 结尾的路径导入文件时&#xff0c;ESLint 可能会报告这个错误&#xff0c;因为它期望导入的是 JavaScript 文件&#xff08;.js 或 .jsx&#xff09;而不是 TypeScript 文件&…

nest入门教程

1.介绍&#xff1a; Nest (NestJS) 是一个用于构建高效、可扩展的 Node.js 服务器端应用的框架。它使用渐进式 JavaScript&#xff0c;构建并完全支持 TypeScript&#xff08;但仍然允许开发者使用纯 JavaScript 进行编码&#xff09;并结合了 OOP&#xff08;面向对象编程&am…

CNCF项目全景图介绍

本文首发在个人博客上&#xff0c;欢迎来踩&#xff01; 云原生计算基金会&#xff08;CNCF&#xff09;介绍 CNCF(Cloud Native Computing Foundation)官网链接&#xff1a;https://www.cncf.io/ 官方的介绍如下&#xff1a; 云原生技术有利于各组织在公有云、私有云和混合…

程序猿大战Python——流程控制——if基础语句

三大基本语句 目标&#xff1a;了解三大基本语句有哪些&#xff1f; Python中有三大基本语句&#xff0c;它们支撑起了程序的业务逻辑处理。 三大基本语句有&#xff1a; &#xff08;1&#xff09;顺序语句 &#xff08;2&#xff09;分支语句 &#xff08;3&#xff09;循…