实战 | YOLOv10 自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程)

导读

    本文主要介绍如何使用YOLOv10在自定义数据集训练实现车牌检测 (数据集+训练+预测 保姆级教程)。  

YOLOv10简介

    YOLOv10是清华大学研究人员在Ultralytics Python包的基础上,引入了一种新的实时目标检测方法,解决了YOLO以前版本在后处理和模型架构方面的不足。通过消除非最大抑制(NMS)和优化各种模型组件,YOLOv10在降低计算像素数的同时实现了相当的性能。大量实验证明,YOLOv10在多个模型上实现了卓越的精度-延迟权衡。

图片

概述

    实时目标检测旨在优先延迟准确的预测图像中的物体类别和位置。YOLO 系列在性能和效率之间取得了平衡,因此一直处于较低水平。然而,对 NMS 的依赖和架构的低效阻碍了性能的实现。YOLOv10 通过为无 NMS 训练引入了一致的双重分配并以提高准确性为导向的核心模型设计策略,解决了答案。

网络架构

    YOLOv10 的结构建立在以前YOLO模型的基础上,同时引入了几项关键创新。模型架构由以下部分组成:

    • 主干网: YOLOv10中的主干网负责特征提取,它使用了增强版的CSPNet(跨阶段部分网络),以改善梯度流并减少计算能力。

    • 颈部:颈部设计用于汇聚不同的尺度成果,并将其传递到头部。它包括PAN(路径聚合网络)层,可实现有效的多尺度特征融合。

    • 一对多头:在训练过程中为每个对象生成多个预测,以提供丰富的监督信号并提高学习准确性。

    • 一头:在推理过程中选择一个对象,无需NMS,从而减少并提高结果质量。

主要功能

    • 无NMS 模式:利用一致的配置来消除对NMS 的需求,从而减少错误判断。

    • 整体模型设计:从业人员绩效评估和绩效评价模块,包括轻量级数据分析、通道去耦和质量引导设计。

    • 增强的模型功能:应对大数据和部分自觉模块,在不增加大量计算成本的情况下提高性能。

模型支持:

YOLOv10有多种模型,可满足不同的应用需求:

    • YOLOv10-N:用于资源极其有限的环境的纳米版本。

    • YOLOv10-S:兼顾速度和精度的小型版本。

    • YOLOv10-M:通用中型版本。

    • YOLOv10-B:平衡型,宽度增加,精度更高。

    • YOLOv10-L:大型版本,精度更高,但计算资源增加。

    • YOLOv10-X:超大型版本可实现高精度和性能。

特性

    在准确性和效率方面,YOLOv10 优于YOLO 以前的版本和其他模型。例如,在 COCO 数据集上,YOLOv10-S 的速度是 RT-DETR-R18 的 1.8 倍,而 YOLOv10-B 与 YOLOv9-C 相比,在性能相同的条件下,延迟浏览器打开 46%,参数浏览器打开 25%。下图是使用 TensorRT FP16 在 T4 GPU 上的测试结果:

图片

实验和结果

    YOLOv10 在 COCO 等标准基准上进行了广泛测试,证明了卓越的性能和准确性。与先前的版本和其他当代版本相比,YOLOv10 在延迟和准确性方面都有显著提高。

图片

      

YOLOv10自定义数据集训练

    【1】准备数据集。数据集标注使用LabelImg,具体使用和标注可参考下面文章:

实战 | YOLOv8自定义数据集训练实现手势识别 (标注+训练+预测 保姆级教程)

    这里直接给出数据集,大家可以自行下载:

https://github.com/AarohiSingla/YOLOv10-Custom-Object-Detection/tree/main/custom_dataset/dataset

    数据集包含300张图片样本,训练集210张,验证集60张,测试集30张。

图片

图片

图片

图片

图片

    类别只有1类,所以序号都为0。

    【2】配置训练环境。

    ① 下载yoloV10项目:

git clone https://github.com/THU-MIG/yolov10.git

    ② 解压后切换到yoloV10目录下,安装依赖项:

cd yolov10
pip install .

    ③ 下载预训练模型:

图片

import osimport urllib.request
# Create a directory for the weights in the current working directoryweights_dir = os.path.join(os.getcwd(), "weights")os.makedirs(weights_dir, exist_ok=True)
# URLs of the weight filesurls = [    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10n.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10s.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10m.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10b.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10x.pt",    "https://github.com/jameslahm/yolov10/releases/download/v1.0/yolov10l.pt"]
# Download each filefor url in urls:    file_name = os.path.join(weights_dir, os.path.basename(url))    urllib.request.urlretrieve(url, file_name)    print(f"Downloaded {file_name}")

图片

    【3】模型训练

yolo task=detect mode=train epochs=100 batch=16 plots=True model=weights/yolov10n.pt data=custom_data.yaml

    custom_data.yaml配置如下:

图片

    【4】 模型推理:

    图片推理:

yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=test_images_1/veh2.jpg

​​​​​​​

from ultralytics import YOLOv10import supervision as svimport cv2
classes = {0: 'licence'}
model = YOLOv10('runs/detect/train/weights/best.pt')image  = cv2.imread('test_images_1/veh2.jpg')
results = model(source=image, conf=0.25, verbose=False)[0]detections = sv.Detections.from_ultralytics(results)box_annotator = sv.BoxAnnotator()
labels = [    f"{classes[class_id]} {confidence:.2f}"    for class_id, confidence in zip(detections.class_id, detections.confidence)]annotated_image = box_annotator.annotate(    image.copy(), detections=detections, labels=labels)
cv2.imshow('result', annotated_image)cv2.waitKey()cv2.destroyAllWindows()

图片

    视频推理:

yolo task=detect mode=predict conf=0.25 save=True model=runs/detect/train/weights/best.pt source=b.mp4
from ultralytics import YOLOv10import supervision as svimport cv2
classes = {0: 'licence'}
model = YOLOv10('runs/detect/train/weights/best.pt')
def predict_and_detect(image):    results = model(source=image, conf=0.25, verbose=False)[0]    detections = sv.Detections.from_ultralytics(results)    box_annotator = sv.BoxAnnotator()
    labels = [        f"{classes[class_id]} {confidence:.2f}"        for class_id, confidence in zip(detections.class_id, detections.confidence)    ]    annotated_image = box_annotator.annotate(        image.copy(), detections=detections, labels=labels    )    return annotated_image
def create_video_writer(video_cap, output_filename):    # grab the width, height, and fps of the frames in the video stream.    frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))    frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))    fps = int(video_cap.get(cv2.CAP_PROP_FPS))    # initialize the FourCC and a video writer object    fourcc = cv2.VideoWriter_fourcc(*'MP4V')    writer = cv2.VideoWriter(output_filename, fourcc, fps,                             (frame_width, frame_height))    return writer
video_path = 'b.mp4'cap = cv2.VideoCapture(video_path)
output_filename = "out.mp4"writer = create_video_writer(cap, output_filename)
while True:    success, img = cap.read()    if not success:        break    frame = predict_and_detect(img)    writer.write(frame)    cv2.imshow("frame", frame)        if cv2.waitKey(1)&0xFF ==27: #按下Esc键退出        break
cap.release()writer.release()

图片

—THE END—

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/691759.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

大模型时代的具身智能系列专题(十一)

UMass Amherst 淦创团队 淦创是马萨诸塞大学阿默斯特分校的一名教员,也是麻省理工学院- ibm沃森人工智能实验室的研究经理。在麻省理工学院博士后期间,和Antonio Torralba教授、Daniela Rus教授和Josh Tenenbaum教授一起工作。在此之前,在清…

【面试官】知道synchronized锁升级吗

一座绵延在水上的美术馆——白鹭湾巧克力美术馆。它漂浮于绿水之上,宛如一条丝带轻盈地伸向远方 文章目录 可重入锁synchronized实现原理 synchronized缺点保存线程状态锁升级锁升级优缺点 1. 可重入锁 面试官:知道可重入锁有哪些吗? 可重入意味着获取…

解决Mac无法上网/网络异常的方法,重置网络

解放方法 1、前往文件夹:/Library/Preferences/SystemConfiguration 2 、在弹窗中输入上边的地址 3 、把文件夹中除了下图未选中的文件全部删掉,删除时需要输入密码 4 、重启mac 电脑就搞定了。

免费数据库同步软件

在信息化日益发展的今天,数据同步成为了企业和个人用户不可或缺的一部分。数据库同步软件作为数据同步的重要工具,能够帮助我们实现不同数据库系统之间的数据复制和同步,确保数据的一致性和完整性。本文将介绍几款免费数据库同步软件&#xf…

SpringBoot+Vue教师工作量管理系统(前后端分离)

技术栈 JavaSpringBootMavenMySQLMyBatisVueShiroElement-UI 角色对应功能 教师管理员 功能截图

iBeacon赋能AR导航:室内定位技术的原理与优势

室内定位导航对于大型商场、机场、医院等复杂室内环境至关重要,它帮助人们快速找到目的地,提高空间利用率。AR技术通过将虚拟信息叠加在现实世界,提供直观导航指引,正在成为室内导航的新趋势,增强用户互动体验&#xf…

一文读懂 Compose 支持 Accessibility 无障碍的原理

前言 众所周知,Compose 作为一种 UI 工具包,向开发者提供了实现 UI 的基本功能。但其实它还默默提供了很多其他能力,其中之一便是今天需要讨论的:Android 特色的 Accessibility 功能。 采用 Compose 搭建的界面,完美…

将二叉排序树转换成双向链表--c++【做题记录】

【问题描述】 编写程序在不增加结点的情况下,将二叉排序树转换成有序双向链表(如下图)。 链表创建结束后,按照从前往后的顺序输出链表中结点的内容。 【输入输出】 【输入形式】 第一行输入数字n,第二行输入n个整数…

车载诊断架构 - 引导诊断

我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,多看一眼都是你的不对。非必要不费力证明自己,无利益不试图说服别人,是精神上的节…

八爪鱼现金流-018,持续打磨

八爪鱼,被动收入,财务自由,现金流,现金流游戏,各银行利率,money,资产负债表,财务自由,资产管理,个人理财,管理个人资产,理财,打造被动收入,躺着赚钱,让钱为我打工

Cell-在十字花科植物中年生和多次开花多年生开花行为的互相转化-文献精读21

Reciprocal conversion between annual and polycarpic perennial flowering behavior in the Brassicaceae 在十字花科植物中年生和多次开花多年生开花行为的互相转化 亮点 喜马拉雅须弥芥 和 内华达糖芥 是两个多年生植物模型 MADS-box 基因的剂量效应决定了一年生、二年生…

使用OpenCV dnn c++加载YOLOv8生成的onnx文件进行实例分割

在网上下载了60多幅包含西瓜和冬瓜的图像组成melon数据集,使用 EISeg 工具进行标注,然后使用 eiseg2yolov8 脚本将.json文件转换成YOLOv8支持的.txt文件,并自动生成YOLOv8支持的目录结构,包括melon.yaml文件,其内容如下…

【Python教程】1-注释、变量、标识符与基本操作

在整理自己的笔记的时候发现了当年学习python时候整理的笔记,稍微整理一下,分享出来,方便记录和查看吧。个人觉得如果想简单了解一名语言或者技术,最简单的方式就是通过菜鸟教程去学习一下。今后会从python开始重新更新&#xff0…

人工智能--教育领域的运用

文章目录 🐋引言 🐋个性化学习 🦈体现: 🦈技术解析: 🐋智能辅导与虚拟助手 🦈体现: 🦈技术解析: 🐋自动评分与评估 &#x1f…

AI大模型在广告领域的应用

深度对谈:广告创意领域中AIGC的应用_生成式 AI_Tina_InfoQ精选文章

【python】OpenCV GUI——Mouse(14.1)

参考学习来自 文章目录 背景知识cv2.setMouseCallback 介绍小试牛刀 背景知识 GUI(Graphical User Interface,图形用户界面) 是一种允许用户通过图形元素(如窗口、图标、菜单和按钮)与电子设备进行交互的界面。与传统…

【Mtk Camera开发学习】06 MTK 和 Qcom 平台支持通过 Camera 标准API 打开 USBCamera

本专栏内容针对 “知识星球”成员免费,欢迎关注公众号:小驰行动派,加入知识星球。 #MTK Camera开发学习系列 #小驰私房菜 Google 官方介绍文档: https://source.android.google.cn/docs/core/camera/external-usb-cameras?hlzh-…

【React】classnames 优化类名控制

1. 介绍 classnames是一个简单的JS库,可以非常方便的通过条件动态的控制class类名的显示 ClassNames是一个用于有条件处理classname字符串连接的库 简单来说就是动态地去操作类名,把符合条件的类名粘在一起 现在的问题:字符串的拼接方式不…

VMware导入小白分享的MacOS版本之后,无法开机的解决方案

前言 这段时间陆续有小伙伴找到小白,说:导入小白分享的MacOS版本之后,出现无法开机的问题。 遇到这个问题,并不是说明分享版本有问题,因为大部分小伙伴导入之后都没有出现类似的问题,都是导入之后开机&…

记录项目使用ts时引入js文件后导致项目运行空白问题

主要原因: 使用ts后开启了eslint检测,而js压缩文件引入的位置在eslint检测的文件内。导致eslint检测认为该文件为很大的文件,或eslint认为此文件内存在无法处理的语法结构等问题。 解决方法: 1、把文件移到eslint检测外的文件引入…