A Turtle and Piggy Are Playing a Game
题目:
思路:输出2的幂次b使得2^b为最大的不超过x的数
代码:
#include <iostream>
using namespace std;
const int N = 2e5 + 10;
void solve() {
int l, r;
cin >> l >> r;
if(r % 2) r --;
int ans = 0;
while(r != 1) {
ans ++;
r /= 2;
}
cout << ans << endl;
}
int main() {
int t;
cin >> t;
while(t -- ) {
solve();
}
return 0;
}
当然也可以直接输出_lg(x)
B. Turtle and an Infinite Sequence
问题:
思路:实际上就是求一个区间内的or值,区间为max(0, n - m), n + m。由于区间范围很大,暴力会t,因此考虑寻找某些规律。
x:100011
y:101001
从x自增到y,发现x,y最左边两位是相等的,因此这两位相等的位只有为1时才会对答案产生贡献,这两位其他位会从小的不断自增到大的,因此这些位肯定会出现1,因此答案就是从左向右拆位直到找到第一个不同的位,这之前只有1对答案有贡献,这之后都对答案有贡献
代码:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 2e5 + 10;
int get(int x) {
int cnt = 0;
while(x) {
cnt ++;
x >>= 1;
}
return cnt;
}
int qmi(int a) {
int res = 1;
int b = 2;
while(a) {
if(a & 1) res *= b;
b *= b;
a >>= 1;
}
return res;
}
void solve() {
int n, m;
cin >> n >> m;
int pos = -1;
int x = m + n;
int len = get(x);
vector<int> ans;
if(m == 0) cout << n << endl;
else {
vector<int> a;
vector<int> b;
for(int i = len - 1; i >= 0; i -- ) {
int aa = (x >> i) & 1;
int bb = (n >> i) & 1;
a.push_back(aa);
b.push_back(bb);
}
bool flag = false;
for(int i = 0; i <= len - 1; i ++ ) {
//cout << b[i] << " ";
if(a[i] != b[i]) flag = true;
if(!flag) ans.push_back(a[i]);
else ans.push_back(1);
}
len = get(n);
a.clear();
b.clear();
x = n;
int y = max(0, n - m);
for(int i = len - 1; i >= 0; i -- ) {
int aa = (x >> i) & 1;
int bb = (y >> i) & 1;
a.push_back(aa);
b.push_back(bb);
}
vector<int> ans1;
flag = false;
for(int i = 0; i <= len - 1; i ++ ) {
//cout << b[i] << " ";
if(a[i] != b[i]) flag = true;
if(!flag) ans1.push_back(a[i]);
else ans1.push_back(1);
}
reverse(ans.begin(), ans.end());
reverse(ans1.begin(), ans1.end());
for(int i = 0; i < ans1.size(); i ++ ) {
ans[i] |= ans1[i];
}
int res = 0;
for(int i = 0; i < ans.size(); i ++ ) {
res += ans[i] * qmi(i);
}
// for(auto t: a) cout << t << " ";
cout << res << endl;
}
}
int main() {
int t;
cin >> t;
while(t -- ) {
solve();
}
return 0;
}
赛后优化代码:
#include <iostream>
using namespace std;
void solve() {
int n, m;
cin >> n >> m;
int l = max(0, n - m), r = n + m;
int ans = 0;
bool flag = false;
for(int i = 30; i >= 0; i -- ) {
int x = (l >> i) & 1;
int y = (r >> i) & 1;
if(x != y) flag = true;
if(!flag) {
ans += (1 << i) * x;
} else ans += (1 << i) * 1;
}
cout << ans << endl;
}
int main() {
int t;
cin >> t;
while(t -- ) {
solve();
}
return 0;
}
C: Turtle and an Incomplete Sequence
题目:
思路:先特判,特判掉都是-1的以及只有一个非-1数。特判之后记录所有非-1数的位置对于第一个位置和最后一个位置让他们分别向左右扫,不断除2,如果变成0就赋值-1.对于任意两位置pos[i] pos[i + 1]让他们两个向中间靠拢,哪个大就/2如果变成0就置2 最后当strat + 1 = end时判断下相邻元素是否合法。对于这种解法的正确性可以考虑一颗二叉树(父节点u 左子节点2u 右子节点2u + 1),有两个节点,两个节点不断除2最终一定会到他们的lca上.
代码:
#include <iostream>
#include <vector>
using namespace std;
const int N = 2e5 + 10;
int a[N];
int n;
void solve() {
cin >> n;
vector<int> pos;
vector<int> b(n + 5);
for(int i = 1; i <= n; i ++ ) {
cin >> a[i];
if(a[i] != -1) {
pos.push_back(i);
b[i] = a[i];
}
}
if(!pos.size()) {
b[1] = 1;
for(int i = 2; i <= n; i ++ ) {
b[i] = b[i - 1] / 2;
if(b[i] == 0) b[i] = 2;
}
for(int i = 1; i <= n; i ++ ) cout << b[i] << " ";
cout << endl;
return;
}
if(pos.size() == 1) {
for(int i = pos[0]; i >= 1; i -- ) {
b[i - 1] = b[i] / 2;
if(b[i - 1] == 0) b[i - 1] = 2;
}
for(int i = pos[0]; i <= n; i ++ ) {
b[i + 1] = b[i] / 2;
if(b[i + 1] == 0) b[i + 1] = 2;
}
for(int i = 1; i <= n; i ++ ) cout << b[i] << " ";
cout << endl;
return;
}
for(int i = 0; i < pos.size() - 1; i ++ ) {
int start = pos[i];
int end = pos[i + 1];
if(i == 0) for(int j = start - 1; j >= 1; j -- ) {
b[j] = b[j + 1] / 2;
if(b[j] == 0) b[j] = 2;
}
if(i + 1 == pos.size() - 1) for(int j = end + 1; j <= n; j ++ ) {
b[j] = b[j - 1] / 2;
if(b[j] == 0) b[j] = 2;
}
while(start + 1 < end) {
if(b[start] >= b[end]) {
start ++;
b[start] = b[start - 1] / 2;
if(b[start] == 0) b[start] = 2;
} else {
end --;
b[end] = b[end + 1] / 2;
if(b[end] == 0) b[end] = 2;
}
}
if(b[start] != b[end] / 2 && b[end] != b[start] / 2) {
cout << "-1" << endl;
return;
}
}
for(int i = 1; i <= n; i ++ ) cout << b[i] << " ";
cout << endl;
}
int main() {
int t;
cin >> t;
while(t -- ) {
solve();
}
return 0;
}
D Turtle and Multiplication
题目:
思路:优先考虑素数,于是问题转化为了在当前数量的素数中是否可以找到一条欧拉通路。点数可以用二分查找,当查找到奇数点时,由于完全连通图各点是度数为偶数,因此一定存在欧拉通路,对于偶数点,所有点度数为奇数,由于每删去一条边可以使得最多两个点度数变成偶数,因此至少要删去x / 2 - 1条边可以使得图中存在欧拉通路。因此建图后跑一遍欧拉路即可
代码:不知道什么原因1 1000000这个样例过不去,有时间再说吧
#include <iostream>
#include <cstring>
#include <vector>
using namespace std;
const int N = 1e6 + 1000;
vector<int> seq;
int n, cnt;
int prime[N];
int val[N * 2], ne[N * 2], h[N], idx;
bool st[N], used[N * 2];
void add(int a, int b) {
val[idx] = b;
ne[idx] = h[a];
h[a] = idx ++;
}
void is_prime(int x) {
for(int i = 2; i <= x; i ++ ) {
if(!st[i]) prime[cnt ++] = i;
for(int j = 0; prime[j] <= x / i; j ++ ) {
st[prime[j] * i] = true;
if(i % prime[j] == 0) break;
}
}
}
bool check(int x) {
if(x & 1) {
int cnt = x + (x * (x - 1)) / 2;
return cnt >= n - 1;
} else {
int cnt = x + (x * (x - 1)) / 2 - x / 2 + 1;
return cnt >= n - 1;
}
}
void dfs(int u) {
while(h[u] != -1) {
int i = h[u];
if(used[i]) {
h[u] = ne[i];
continue;
}
used[i] = 1;
used[i ^ 1] = 1;
h[u] = ne[i];
dfs(val[i]);
seq.push_back(val[i]);
}
}
/*void dfs(int u) {
for(int i = h[u]; i != -1; i = ne[i]) {
if(used[i]) {
h[u] = ne[i];
continue;
}
used[i] = 1;
used[i ^ 1] = 1;
h[u] = ne[i];
dfs(val[i]);
seq.push_back(val[i]);
}
}*/
void init() {
for(int i = 1; i <= 2 * n + 5000; i ++ ) used[i] = 0;
memset(h, -1, sizeof h);
idx = 0;
seq.clear();
}
void solve() {
init();
cin >> n;
int l = 1, r = 2000;//二分点数
while(l < r) {
int mid = l + r >> 1;
if(check(mid)) r = mid;
else l = mid + 1;
}
if(l & 1) {
for(int i = 0; i < l; i ++ ) {
for(int j = i; j < l; j ++ ) {
add(prime[i], prime[j]);
add(prime[j], prime[i]);
}
}
} else {
int judge = 0;
int cnt = l / 2 - 1;
for(int i = 0; i < l; i ++ ) {
for(int j = i; j < l; j ++ ) {
if(j == i + 1) {
judge ++;
if(!(judge & 1)) {
continue;
}
}
add(prime[i], prime[j]);
add(prime[j], prime[i]);
}
}
}
dfs(2);
int len = seq.size();
for(int i = 0; i < min(len, n); i ++ ) cout << seq[i] << " ";
if(len < n) cout << 2;
cout << endl;
}
int main() {
is_prime(200000);
int t;
cin >> t;
while(t -- ) {
solve();
}
return 0;
}
E: