机器学习模型的可解释性:增加对人工智能系统的信任和理解

        为了以道德和值得信赖的方式使用人工智能,研究人员必须继续创建平衡模型复杂性和易于解释的方法。

        机器学习模型在各个领域的使用都取得了重大进展,包括自然语言处理、生成式人工智能和自主系统等。另一方面,随着模型复杂性和规模的增加,它们内部工作方式的可见性降低,从而导致缺乏透明度和问责制。模型的可解释能力的想法最近成为解决这一问题的重要研究领域的前沿。本文探讨了机器学习模型可解释性的重要性,以及与之相关的困难以及为提高可解释性而设计的解决方案。可解释性,使模型具有开放性和人类可以理解的见解。

        由于人工智能 (AI)和机器学习(ML)模型在各个领域的集成度不断提高,人们开始担心这些模型的决策过程缺乏可解释性。人工智能系统提供人类可以理解的预测或分类见解的能力被称为模型可解释性。本文探讨了模型中可解释性的意义、其在各个领域的适用性以及可解释性对人工智能可靠性的影响。

为什么要建立模型的可解释性

  • 道德意义:模型必须能够被解释,以保证道德人工智能的部署。它有助于识别数据中的偏见和偏见趋势,这两者都可能对决策过程产生负面影响。
  • 问责制和增加信任: 人工智能系统做出的决策可以对各个领域产生深远的影响,包括医疗保健、金融和自动驾驶。用户和其他利益相关者更有可能相信可解释的模型,因为这些模型使决策过程更加可见和易于理解。这最终导致人工智能系统做出的决策的责任增加。

模型可解释性挑战

  • 性能和可解释性权衡:模型的性能和解释结果的能力之间通常存在不平衡。高水平的可解释性可能会以牺牲准确预测为代价,而高水平的准确性可能会使理解模型变得困难。
  • 模型复杂性: 具有数百万个参数的复杂模型设计是现代人工智能模型(尤其是深度神经网络)的标志。试图弄清楚这些模型如何做出决策是一个巨大的挑战。

模型可解释性技术

        可解释的友好模型:有些模型自然适合解释,例如决策树 和线性回归。当涉及透明度至关重要的应用时,这些模型通常是首选。
        基于规则的可解释性:系统通常采用 if-then 规则作为为模型决策提供解释的手段。这些原则用人们可以理解的语言解释了模型如何得出结论和预测。
        可视化辅助可解释性: 通过应用激活图和显着图等可视化技术,帮助用户理解输入的各个方面如何影响模型的输出。涉及图像识别的任务从这些技术的应用中受益匪浅。例如,在阿尔茨海默病中使用 深度学习进行大脑 MRI 分类在网络中,人们的目标是预测受试者是否患有AD,因此拥有一张显着性图来加强模型的性能主张是很有帮助的。如图 1 所示,我们有一个由 4 个脑部 MRI 扫描组成的显着性图,其中 AD 被正确预测,我们可以看到某个特定区域更加突出,从而证明了模型能够正确检测受影响区域的信心通过 AD 并预测它们。

 

        特征重要性:通过特征重要性方法(例如LIME(局部可解释模型不可知解释)和SHAP(SHapley 加法解释))为每个单独的输入特征分配相关性分数。使用这些方法,人们可以了解哪些特征对某种预测贡献最大。
        让我们看一下 SHAP 如何帮助我们解释一个简单的线性回归模型。在这个实验中,我使用了一个营销数据集,在其中构建了一个线性回归模型,以根据其他自变量预测购物花费的总额。然后,我在训练后的模型和数据上使用 SHAP 库来识别对模型影响最大的特征或变量。

# calculate SHAP values 
import shap

explainer = shap.Explainer(model, X_train) ## model is the fit linear regression model, X_train is the training data
shap_values = explainer(X_test) ## X_test is the testing data

# plot
plt.title('SHAP summary for Total amount spent', size=16)
shap.plots.beeswarm(shap_values, max_display=5)

 从图 2 所示的输出中,我们可以看到有助于确定线性回归模型中支出总额的前五个特征。我们可以看到,消费金额最大的是酒,其次是肉和鱼。

模型可解释性影响

  • 在金融行业中,透明模型为监管机构、客户和金融机构提供了了解批准或拒绝某些信用卡或抵押贷款申请背后的原因的机会。这有助于确保公平性和问责制。
  • 如果想要建立医疗保健专业人员的信心,模型的可解释性在医学诊断领域至关重要。可解释的模型可以为它们所产生的诊断提供明确的原因,从而可以做出更有把握的决策。例如,在使用神经影像数据进行早期疾病分类领域正在进行大量研究。可解释的模型将极大地提高人们对此类预测的信心,并帮助医疗专业人员进行疾病的早期诊断。
  • 目前,人们正在开展大量研究和工作,致力于实现完全自动驾驶汽车,不仅适用于企业解决方案,也适用于个人使用。此类机器学习模型的可解释性对于自动驾驶汽车的推出至关重要,因为它可以向驾驶员、乘客和行人保证人工智能系统正在做出安全可靠的决策。

结论

        随着人工智能系统的使用越来越广泛,对机器学习模型的可解释性的需求正变得越来越重要。透明且可解释的模型可以促进问责制、增加信任以及道德意义。为了在各种现实世界应用中以合乎道德且值得信赖的方式使用人工智能,研究人员和从业者都需要不断开发方法,在模型复杂性水平和解释容易程度之间找到理想的平衡。由于持续的合作努力,机器学习模型可解释性领域将继续发展,这将有助于人工智能技术以可持续的方式进一步发展。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/68692.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

元年方舟企业数字化PaaS平台入选《全国企业数字化转型十佳案例》|元年科技

7月4日,2023全球数字经济大会第二届全国企业数字化转型高峰论坛在京隆重举行。大会由全球数字经济大会组委会主办,中关村数字经济产业联盟承办,北京市科学技术协会鼎力支持。论坛期间元年科技凭借卓越案例《构建数字化转型引擎:元…

苏州OV泛域名RSA加密算法https

RSA加密算法是一种非对称加密算法,它被广泛应用于信息安全领域。与对称加密算法不同,RSA加密算法使用了两个密钥,一个公钥和一个私钥。公钥可以公开,任何人都可以使用它加密信息,但只有私钥的持有者才能解密信息。RSA加…

竞赛项目 深度学习的水果识别 opencv python

文章目录 0 前言2 开发简介3 识别原理3.1 传统图像识别原理3.2 深度学习水果识别 4 数据集5 部分关键代码5.1 处理训练集的数据结构5.2 模型网络结构5.3 训练模型 6 识别效果7 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 深度学习…

Mac unsupported architecture

(瓜是长大在营养肥料里的最甜,天才是长在恶性土壤中的最好。——培根) unsupported architecture 在mac的m系列芯片中容易出现此类问题,因为m系列是arm64的芯片架构,而有些nodejs版本或npm包的芯片架构是x86的&#x…

代码随想录算法训练营第十四天|对树的初步认识

二叉树种类 在我们解题过程中二叉树有两种主要的形式:满二叉树和完全二叉树。 满二叉树 满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。 这棵二叉树为满二叉树&…

相关C语言易错点

四区 我们想来介绍一下内存四区 栈区 局部变量,局部常量 空间自动开辟和释放,只能作用于局部,函数不能返回局部变量的空间地址 堆区 malloc,realloc,free 手动开辟,手动释放,如果不手动释放,那么会在程…

python3.6 安装pillow失败

问题描述 python3 安装 pillow 失败 错误原因 python3.6 不支持 pillow9.0 以上的版本 解决方法: 指定版本安装 e.g., pillow8.0 pip3 install pillow8.0

【HarmonyOS】Java如何引用外部jar包

【关键字】 Java、引用jar包​ 【写在前面】 使用API6和API7开发HarmonyOS应用时,因为应用中只能引用SDK中开放的功能接口,但是部分jdk自带的接口功能在SDK中并未封装,要想在工程中使用jdk开放的接口功能,需要将jdk中的jar包通过…

一文讲述什么是数字孪生?

当前世界正处于百年未有之大变局,数字经济在各国已成为经济发展的重点。数字经济也是我国社会经济发展的必经之路。 近些年,大数据、人工智能、数字孪生等技术的发展促使技术与国内各产业进一步融合,从而推动了各产业在智能化、数字化等方面…

UEFI+win7+多系统安装

物理主机先安装的Windows10,同时需要安装Windows7的双系统 1.在https://next.itellyou.cn/下载Windows 7 ISO 2.使用Rufus制作U盘安装盘 注意一定要选择FAT32格式,否则安装过程会卡住 3.由于官方纯净的安装镜像默认不支持UEFI安装,有两种解决…

React - useEffect函数的理解和使用

文章目录 一,useEffect描述二,它的执行时机三,useEffect分情况使用1,不写第二个参数 说明监测所有state,其中一个变化就会触发此函数2,第二个参数如果是[]空数组,说明谁也不监测3,第…

RHCE使用RHEL系统角色题报错

题目: 使用 RHEL 系统角色 4. 安装 RHEL 系统角色软件包,并创建符合以下条件的 playbook/home/curtis/ansible/selinux.yml : 在所有受管节点上运行 使用 selinux 角色 配置该角色,以强制状态使用 selinux 报错一: [c…

tomcat优化

目录 tomcat tomcat优点 tomcat核心组件 Web容器 其他 功能组件 connector container tomcat处理请求过程 目录文件内容 内存池 堆区 JVM优化 ajp-nio-8009 启动速度优化 配置文件优化 tomcat tomcat是基于Java代码开发的开放源代码的web应用服务器 tomcat就…

Python Selenium 设置带账号密码的socks5代理,启动浏览器

selenium添加带有账密的socks5代理 我们都知道在使用selenium开发爬虫的时候不可避免的会使用socks5高匿名代理。一般情况下我们使用方法如下(开发语言为python): from selenium import webdriver chrome_options webdriver.ChromeOptions() chrome_options.add_…

英特尔处理器被曝出“Downfall”漏洞:可窃取加密密钥

今日,谷歌的一位高级研究科学家利用一个漏洞设计了一种新的CPU攻击方法,该漏洞可影响多个英特尔微处理器系列,并允许窃取密码、加密密钥以及共享同一台计算机的用户的电子邮件、消息或银行信息等私人数据。 该漏洞被追踪为CVE-2022-40982&am…

解决 idea maven依赖引入失效,无法正常导入依赖问题

解决 idea maven依赖引入失效,无法正常导入依赖问题_idea无法导入本地maven依赖_普通网友的博客-CSDN博客 解决 idea maven依赖引入失效,无法正常导入依赖问题 idea是真的好用,不过里面的maven依赖问题有时候还真挺让人头疼,不少小…

【计算机视觉】关于图像处理的一些基本操作

目录 图像平滑滤波处理均值滤波计算过程python实现 高斯滤波计算过程python实现 中值滤波计算过程python实现 图像的边缘检测Robert算子计算过程python实现 图像处理腐蚀算子计算过程python实现 Hog(梯度方向直方图)特征计算流程:Hog的特征维…

brew+nginx配置静态文件服务器

背景 一下子闲下来了,了解的我的人都知道我闲不下来。于是,我在思考COS之后,决定自己整一个本地的OSS,实现静态文件的访问。那么,首屈一指的就是我很熟的nginx。也算是个小复习吧,复习一下nginx代理静态文…

【Java并发】如何进行死锁诊断?

文章目录 1.什么是死锁2.死锁怎么产生的3.如何进行死锁诊断?3.1 通过命令查看3.2 jconsole可视化工具3.2 VisualVM:故障处理工具 1.什么是死锁 死锁(Deadlock)是指两个或多个进程(线程)在执行过程中&#…

Jmeter(二) - 从入门到精通 - 创建测试计划(Test Plan)(详解教程)

1.简介 上一篇中已经教你把JMeter的测试环境搭建起来了,那么这一篇我们就将JMeter启动起来,一睹其芳容,首先宏哥给大家介绍一下如何来创建一个测试计划(Test Plan)。 2.创建一个测试计划(Test Plan&#x…