用langchain搭配最新模型ollama打造属于自己的gpt

langchain

前段时间去玩了一下langchain,熟悉了一下大模型的基本概念,使用等。前段时间metaollama模型发布了3.0,感觉还是比较强大的,在了解过后,自己去用前后端代码,调用ollama模型搭建了一个本地的gpt应用。

image.png

核心逻辑

gpt.png

开始搭建

首先本地需要安装ollama的模型,这里有两种方式,大家自己选择即可,第一种选择官网下载[ollama], 第二种可以去docker hub里面下载,里面有ollama的镜像包, 这里为了方便我就用第一种了。

ollama

下载好之后,我们直接执行

ollama serve

命令即可, 出现下面的样子,代表执行成功了。

image.png

这时候ollama会运行在11434端口,这样我们的后端可以通过端口连接到ollama的服务了。

ollama run llama3

直接执行这个命令就可以在本地终端里起一个gpt, llama3ollama最新的模型

image.png

后端代码实现

后端我们用nestjs来搭建

首先我们需要安装一个langchain的包 @langchain/community, 我这里选用的社区版,支持度比较好,模型也比较多。

!!!注意点 推荐用npm和yarn安装, pnpm安装会导致失败,官网上面也有说明这个,楼主踩过坑,如果非要用pnpm安装的话,按照官网指示的操作来

import { Controller, Post, Body, Sse, Header } from '@nestjs/common';

import { Observable, Subject } from 'rxjs';

import { Ollama } from '@langchain/community/llms/ollama';

  


@Controller()

export class AppController {

private messageSubject = new Subject<MessageEvent>();

private model: Ollama;

constructor() {

  this.model = new Ollama({

    baseUrl: 'http://localhost:11434',

    model: 'llama3',

});

}

  


@Sse('sse')

@Header('Content-Type', 'text/event-stream')

sse(): Observable<MessageEvent> {

  return this.messageSubject.asObservable();

}

  

@Post('question')

async addList(@Body() body: { question: string }): Promise<any> {

  const stream = await this.model.stream(body.question);
  
  for await (const str of stream) {

  this.messageSubject.next({

    data: JSON.stringify({ answer: str, end: false }),

  } as MessageEvent);
Å
}

  
  this.messageSubject.next({

    data: JSON.stringify({ answer: '', end: true }),

  } as MessageEvent);

}

}

sse技术

是一种基于HTTP协议的服务器到客户端的单向数据通信技术,允许服务器向浏览器实时推送更新,而不需要客户端通过轮询等方式反复请求数据。很多gpt应用服务端向客户端发送消息都是利用这种方式去做的。SSE协议本质上就是一个Http的get请求,也支持Https,服务端在接到该请求后,返回状态。同时请求头设置也变为流形式。

Content-Type: text/event-stream,

这里因为只是示例demo,逻辑就写在controller层了,标准一点的还是抽到service层。

nest的sse接口返回值是一个Observable(可观察对象), 刚好在rxjs中,我们的suject(主体)也是一种Observable suject和普通的Observable区别在于,suject是多播,并且像EventEmitters ,像维护着多个监听器的一张注册表,当我们在请求到ollama返回的数据后,就可以调用next方法,将值多播到Observale中,这样就可以做到结果的接收

image.png

这个next方法,其实也就是迭代器方法,不断的调用next,会不断的输出值,直到没有值为止, 这里的end属性是控制我们客户端什么时候和服务端断开连接。

前端实现

前端的逻辑就很简单了,当我们发送问题后,监听到服务端发过来的结果收集起来展示即可,我这里的样式写的比较简陋,功能也只是最基本的,大家可以自己完善

import { useRef, useState } from "react";

type Message = {

answer: string;

end: boolean;

};

export default function Layout() {

const [message, setMessage] = useState<Message[]>([]);

const [question, setQuestion] = useState<string>("");

  

const ref = useRef<any>();

  

const send = () => {

const question = ref.current.value as string;

if (!question) return;

fetch("http://localhost:3000/question", {

method: "POST",

headers: {

"Content-Type": "application/json",

},

body: JSON.stringify({

question,

}),

});

setQuestion(question);

ref.current.value = "";

setMessage((prev) => [...prev, { answer: "", end: false }]);

const eventSource = new EventSource("http://localhost:3000/sse");

eventSource.onmessage = ({ data }) => {

const { answer, end } = JSON.parse(data);

if (!end) {

setMessage((prev) => {

const newMessages = [...prev];

newMessages[newMessages.length - 1].answer += answer;

return newMessages;

});

}

if (end) {

eventSource.close();

}

};

};

  

return (

<div className="h-screen w-screen overflow-hidden bg-orange-400">

<nav className="w-full h-16 flex items-center justify-between bg-indigo-400 px-4">

<span className="w-10 h-10">

<img src="public/ollama.png" className="w-full h-full" />

</span>

<span>ollama大模型</span>

<span className="">欢迎使用</span>

</nav>

  

<div className="w-full h-[calc(100%-64px)] relative">

<aside className="w-[200px] bg-red-400 h-full p-4 absolute top-0 flex justify-center">

todo

</aside>

<main className="w-full h-full absolute left-[200px] top-0 px-2">

<div className="w-full h-[calc(100%-64px)] py-4 overflow-y-auto">

<div

style={{

display: question ? "block" : "none",

}}

className="human min-h-[100px] w-[calc(100%-200px)] p-4 rounded-lg text-white bg-yellow-300"

>

{question}

</div>

<div

style={{

display: message?.[message.length - 1]?.answer

? "block"

: "none",

}}

className="ai min-h-[100px] text-white w-[calc(100%-200px)] bg-indigo-500 mt-5 rounded-lg p-4 "

>

{message?.[message.length - 1]?.answer}

</div>

</div>

<footer className="rounded-lg relative bottom-2 w-[calc(100%-200px)] h-[64px] border-red-300 border-solid border-[1px]">

<input

ref={ref}

type="text"

className="rounded-lg w-full px-4 text-lg h-full caret-red-300 outline-none focus:border-[1px] focus:border-solid focus:border-red-500"

/>

<button

onClick={() => send()}

className="z-10 focus:text-red-700 absolute right-0 top-0 w-[64px] h-[62px] bg-red-300"

>

发送

</button>

</footer>

</main>

</div>

</div>

);

}

看下实现效果

总结

ollama的中文支持度不是很好,看视频效果也能看得出来,不过功能还是很强大的。 功能实现的比较基础,不过核心功能都有,大家可以参考代码自行拓展,动动手,你我都有属于自己的gpt

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/685810.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

智谱 GLM4 模型开源,意料之中的尺寸,意料之外的效果

最近智谱开了GLM-4-9B的模型&#xff0c;不是6B&#xff0c;是9B。 一共开源了四个模型&#xff0c;Base版本模型&#xff08;GLM-4-9B&#xff09;、Chat版本模型&#xff08;GLM-4-9B-Chat和GLM-4-9B-Chat-1M&#xff09;和多模态模型&#xff08;GLM-4V-9B-Chat&#xff09…

Vue3的ref创建一个全局变量,非常好用!

1. 前言 Vue3的ref对象我们都知道其用法,通过ref可以创建一个响应式对象使用,同时可以用compute,watch等Vue3的API对其进行操作 不同于Vue2的是,Vue3使用的是组合式API,这也就意味着,我可以在外部单独创建一个ref对象,然后保存,通过导出的方式,给其他的页面使用 理论存在,开始…

SOA的发展历史

1.SOA的发展历程 回顾SOA发展历程&#xff0c;我们把其大致分为了三个阶段&#xff0c;下面将分别介绍每个阶段的重要标准和规范。 1.1.萌芽阶段 这一阶段以XML技术为标志&#xff0c;时间大致从20世纪90年代末到21世纪初。XML系W3C所建&#xff0c;源自流行的标准通用标记语…

course-nlp——8-translation-transformer

本文参考自https://github.com/fastai/course-nlp。 注意力机制和 Transformer Nvidia AI 研究员 Chip Huyen 写了一篇很棒的文章《Top 8 trends from ICLR 2019》&#xff0c;其中的趋势之一是 RNN 正在失去研究人员的青睐。 这是有原因的&#xff0c;RNN 可能很麻烦&#…

网络编程(UPD和TCP)

//发送数据 //UDP协议发送数据 package com.example.mysocketnet.a02UDPdemo;import java.io.IOException; import java.net.*;public class SendMessageDemo {public static void main(String[] args) throws IOException {//发送数据//1.创建DatagramSocket对象(快递公司)//…

MySQL--MHA高可用及读写分离

一、什么是高可用 1.企业级高可用标准&#xff1a;全年无故障时间 全年无故障时间全年故障时间具体时间99.9%0.1%525.6 minkeeplive双主 &#xff08;切换需要人为干预&#xff09;99.99%0.01%52.56 minMHA &#xff08;半自动化&#xff09;99.999%0.001%5.256 minPXC、MGR、…

超详细!新手入门PMP®考试指南,收藏起来备考更高效​!

回复数字“6”&#xff0c;查看PMP考试过关口诀 无论你是刚刚踏入项目管理领域的新手&#xff0c;对于PMP考试充满好奇与期待&#xff1b; 还是已经在职场中摸爬滚打多年&#xff0c;希望通过PMP认证来进一步提升自己的项目管理能力和职业竞争力。 相信这份指南都会为你提供…

超速解读多模态InternVL-Chat1.5 ,如何做到开源SOTA——非官方首发核心技巧版(待修订)

解读InternVL-chat1.5系列 最近并行是事情太杂乱了&#xff0c;静下心来看一看优秀的开源项目,但是AI技术迭代这么快&#xff0c;现在基本是同时看五、六个方向的技术架构和代码&#xff0c;哪个我都不想放&#xff0c;都想知道原理和代码细节&#xff0c;还要自己训练起来&am…

企业自建邮件系统的优势,安全性更高,功能更灵活,维护更便捷

在当今企业信息管理的浪潮中&#xff0c;企业邮件系统显得尤为关键&#xff0c;它不仅加强了内部的沟通效率&#xff0c;还对外展示了企业的专业形象。然而&#xff0c;传统租用企业邮箱服务存在一些不足&#xff0c;如缺乏灵活性、数据管理混乱和难以实现个性化需求&#xff0…

自定义Springboot Starter

创建一个Springboot Starter&#xff0c;借助该Starter我们可以自定义欢迎消息。 本Starter的内容不是重点&#xff0c;重点是创建Starter的流程。 1. 创建Starter工程 1.1 创建Springboot项目 1.2 导入相关依赖&#xff0c;删除spring-boot-maven-plugin <?xml version&…

【Python机器学习】预处理对监督学习的作用

还是用cancer数据集&#xff0c;观察使用MinMaxScaler对学习SVC的作用。 首先&#xff0c;在原始数据上拟合SVC&#xff1a; cancerload_breast_cancer() X_train,X_test,y_train,y_testtrain_test_split(cancer.data,cancer.target,random_state0 ) svmSVC(C100) svm.fit(X_t…

OpenCV的小部件最基本范例

OpenCV也有与PYQT类似的小部件&#xff0c;例如滑块slider。OpenCV可以用与PYQT类似的“信号与槽”方法&#xff0c;也可以在函数中直接查询小部件的值。 import cv2 import numpy as npcv2.namedWindow(Show1) image np.zeros((100, 400, 3), np.uint8) # 创建一个空白内容…

【WP】猿人学_19_乌拉乌拉乌拉

https://match.yuanrenxue.cn/match/19 发包测试 经过发包测试&#xff0c;并没有携带加密参数&#xff0c;但是使用python无法复现&#xff0c;requests&#xff0c;httpx以及异步都不行&#xff0c;网上搜索了一下&#xff0c;这是使用了JA3指纹。可能是我做的时间比较晚&…

O2OA(翱途)开发应用平台(v9)开发实战(3)-如何做信息发布

内容管理就是用来发布信息的&#xff0c;比如说发布单位的内部信息&#xff1a;像公司新闻、通知公告、规章制度等等。 接下来我们来介绍一下如何创建&#xff0c;比如我要创建一个栏目&#xff0c;专门用来发布公司的规章制度 需求 规章制度 首先从菜单打开“内容管理设置…

华为鲲鹏应用开发基础: 计算机系统概述(一)

1. 计算机系统演进及分类 1.1 计算机发展的四个阶段 1.2 当前计算机通常分为以下五类: 分类超级计算机大型计算机迷你计算机(服务器)微型计算机工作站特点• 功能最强、运算速度最快、 存储容量最大的计算机 • 多用于国家高科技领域和 尖端技术研究 例如,“神威太湖之光”…

AR眼镜定制开发_在AR眼镜中实现ChatGPT功能

AR眼镜定制方案中&#xff0c;需要考虑到强大的算力、轻巧的设计和更长的续航时间等基本要求。然而&#xff0c;AR眼镜的设计方案不仅仅需要在硬件和显示技术方面取得突破&#xff0c;还要在用户体验方面有所进展。 过去&#xff0c;由于造价较高&#xff0c;AR眼镜的普及和商业…

中国新闻网怎么投稿 新闻稿件文章如何发布到中国新闻网上,附中国新闻网价格明细

中国新闻网是中国最具影响力和权威性的新闻门户网站之一。作为广大作者和媒体从业者&#xff0c;怎样向中国新闻网投稿一直是一个备受关注的话题。在这篇文章中&#xff0c;我们将着重介绍媒介库网发稿平台&#xff0c;并分享如何在该平台上成功投稿至中国新闻网。 媒介库网发稿…

【ARFoundation自学05】人脸追踪(AR Face manager)实现

1. 修改摄像机朝向渲染方式-选中user 这个方式就会调用前置摄像头 2 创建 AR Session、XR Origin&#xff0c;然后在XR Origin上面添加组件 注意&#xff1a;XR Origin 老版本仍然叫 AR Session Origin 接下来在XR Origin上面添加AR Face Manager组件&#xff0c;如下图&am…

C++之类与类之间的关系

1、UML 2、继承&#xff08;泛化&#xff09; 3、关联 一个类对象与另一个类对象存在一个固定关系。他们的关系不是暂时的&#xff0c;而是固定的。 一个类对象作为另一个类对象的成员。例如订单&#xff0c;是用户的一个成员。用户关联订单。 4、聚合 聚合其实是特殊的一种…

实用商务口语:“企业文化”用英语怎么说?柯桥学英语去银泰

企业文化是指企业员工共有的一套观念、信念、价值和价值行为准则&#xff0c;以及由此导致的行为模式。 英文可以说&#xff1a;enterprise / company / corporate culture。 情景对话练习01 A:Your company made a lot of achievements last year; how do you make it? 你们…