初学者如何对大模型进行微调?

粗略地说,大模型训练有四个主要阶段:预训练、有监督微调、奖励建模、强化学习。

预训练消耗的时间占据了整个训练pipeline的99%,其他三个阶段是微调阶段,更多地遵循少量 GPU 和数小时或数天的路线。预训练对于算力和数据的要求非常高,对于普通开发者来说基本上不用考虑了。

对于开发者来说,如果你有几块GPU显卡,那么就可以尝试微调了。不过在微调之前,我们要弄明白为什么要微调,大模型为什么不能直接用?

一、为什么要微调?

大语言模型的预训练的目标很简单:文字接龙,通过前面的词语预测下一个字也就是预测token序列的下一个token。

预训练基于大规模无监督数据集训练,得到的大语言模型可以保存很多知识,但是可能无法充分利用这些知识来回答问题。

我的理解是预训练就是一个班上学习很好的学霸,不过只会死记硬背,脑袋里记忆了很多知识,但是不会灵活应用这些知识。一般预训练的数据格式如下所示:

[
  {"text": "中国的首都是北京"},
  {"text": "初学者如何对大模型进行微调"}
]

如果将“中国的首都是”输入大模型,大模型做文字接龙,可以很轻松的补全“北京”作为回答。但是如果问题的形式是“中国的首都是哪个城市?”这种疑问句形式时,虽然只进行了预训练的大模型大概率也能回答这个简单问题,比如采用Few-shot prompt等方法。

但这种形式的问题如果内容更复杂一些,大模型可能无法很好的作答(尽管预训练语料中可能包含了问题的答案)。这时我们就需要指令微调来挖掘大语言模型的潜力。让大模型不仅仅满足于文字接龙,而是要真正具备逻辑推理、文案总结等能力。

一般来说我们可以在modelscope中搜索最新的大模型,以Llama系列为例子。其中

  • Meta-Llama-3-8B不包含Instruct关键词,说明它只有预训练,未经过指令微调。

  • Meta-Llama-3-8B-Instruct包含Instruct关键词,经过预训练、指令微调。

二、初学者如何微调?

对于初学者来说,我们不需要指令微调来挖掘大语言模型的潜力,虽然这个时候的指令微调相比预训练资源消耗小很多,但是对于初学者来说还是很困难的,在微调过程中会碰到灾难性遗忘、复读机等问题。

我建议初学者做微调是在指令微调模型的基础加入特定领域的数据,比如法律文档、医疗诊断等领域,模型需要调整其参数以更好地理解和执行这些特定任务的要求,微调允许大语言模型在特定任务的数据集上进一步学习,从而提高其在该领域的准确性和表现。

比如我在Qwen1.5-7B-Chat的基础上(Qwen1.5-7B-Chat是一个预训练、指令微调后的大模型),准备训练数据集45366条,测试数据集5032条,再微调大模型来实现商品评论情感分析,准确率高达91.70%,具体实现方法如下:

微调大模型来实现商品评论情感分析

学习微调最好的办法就是自己亲身实践一遍。在去年的时候微调大模型还是一件比较困难的事情。微调工具链不太成熟,碰到了问题只能一个接一个去提issue,费时费力效果还一般。

不过随着大厂在大模型领域真金白银的投入,大模型方面的技术快速发展,产生了大量大模型训练岗。如果你对大模型训练微调感兴趣,强推听一下知乎知学堂推出的AI大模型公开课,主要针对是想进阶AI方向的产品经理跟程序员,其中大模型原理到AI应用开发框架,LangChain,AI Agent,模型微调技术这几个方面,对你训练大模型都会很有帮助。

入口我直接给大家找过来了,直接听就可以⬇️
【卡片】

其中AGI 课堂顾问团成员来自百度、腾讯、京东、阿里、微软等大厂和头部大模型创业公司、顶尖高校实验室,最低职级P9,含金量还是挺高的。

回到主题上,从我自身角度出发,我推荐使用LLaMA-Factory统一微调框架,它能够支持数百种大模型的微调,并且集成了大量训练加速算法,比很多大模型repo主页训练方法还要快。下面我们来看一看如何使用它。

1.依赖下载

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -e .[metrics]

如果依赖有问题,可以。

2.大模型下载

这里以Baichuan2-13B-Chat为例。

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('baichuan-inc/Baichuan2-13B-Chat')

默认模型会下载到~/.cache/modelscope/hub中,如果需要修改下载目录,可以手动指定环境变量:MODELSCOPE_CACHE,modelscope会将模型和数据集下载到该环境变量指定的目录中

比如更改默认位置:

export MODELSCOPE_CACHE=/home/test/models

3.数据集构建

(1)使用开源数据集

llama_factory中的 data文件夹提供了大量整理好的开源数据集

(2)构建自己的数据集
比如我我按照alpaca 格式准备数据集,包括 instruction, input, output,history 4条内容,其中instruction、 input 为输入,output 为输出标注,数据文件存储格式一般为json。

[
  {
    "instruction": "用户指令(必填)",
    "input": "用户输入(选填)",
    "output": "模型回答(必填)",
    "system": "系统提示词(选填)",
    "history": [
      ["第一轮指令(选填)", "第一轮回答(选填)"],
      ["第二轮指令(选填)", "第二轮回答(选填)"]
    ]
  }
]

例子如下:

[
  {
    "instruction": "判断该文章是观点类还是新闻类",
    "input": "报纸报道称政府已宣布决定在该地区部署更多武装部队。",
    "output": "该文章被归类为新闻类。"
  },
  {
    "instruction": "电子邮件信息的三个最重要的组成部分是什么?",
    "input": "",
    "output": "电子邮件信息的三个最重要的组成部分是主题行、邮件正文和签名。"
  },
  ...
]

(3)引入自己的数据集

构建自己的数据集后,需更新 data/dataset_info.json 文件,并将数据集放置data文件夹

比如我构建了一个数据集test.json,需更新data/dataset_info.json 文件,并将test.json放置于data文件夹

{
  "test": {
    "file_name": "test.json",
  },
  "alpaca_en_demo": {
    "file_name": "alpaca_en_demo.json"
  },
  ...
 }

4.微调

建议初学者采用web可视化页面微调,启动命令如下:

CUDA_VISIBLE_DEVICES=0 llamafactory-cli webui

其中:CUDA_VISIBLE_DEVICES 指定使用哪块显卡

启动后,微调就更简单了。llamafactory集成了多种微调算法,比如

  • Lora

  • QLora

  • LoRA+

  • Mixture-of-Depths

  • GaLore

等等微调算法,在这里我不想深究它们的具体原理。我建议初学者首先使用Lora微调的方式,只需配置3个参数即可开始微调

5.推理

由于采用的是Lora微调,我们需要将原有大模型的权重与自己训练出来的权重合并。

llamafactory也内置了推理模块,只需调1个参数,即可推理,如下图所示:

下面这张图,是我基于llamafactory做的商品评论情感预测,其中1代表好评,0代表差评。可以看到大模型输出1,代表它认为这条评论是好评。

三、最后

现在大模型微调的门槛越来越低,市场上有大量开源微调框架。只要你会部署、有机器就能出个结果,赶紧动手玩起来吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/685534.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

冯喜运:6.7今日黄金原油行情分析及独家操作策略

【黄金消息面分析】:周三(6月5日),金价回升逾1.2%,收盘报每盎司2,355.49美元,全面收复前一交易日的跌幅。周三当天前公布的美国民间就业数据弱于预期,增强了美联储将在今年晚些时候降息的预期&a…

06- 数组的基础知识详细讲解

06- 数组的基础知识详细讲解 一、基本概念 一次性定义多个相同类型的变量,并且给它们分配一片连续的内存。 int arr[5];1.1 初始化 只有在定义的时候赋值,才可以称为初始化。数组只有在初始化的时候才可以统一赋值。 以下是一些示例规则: …

AI全自动批量剪辑软件,一天剪辑3000条原创视频不是梦【剪辑软件+全套教程】

创建一个AI全自动批量剪辑软件的简易程序涉及较为复杂的视频处理和机器学习技术,而且由于这是一个相当高级的任务,通常需要大量的代码以及深度学习框架支持。不过,我可以为您提供一个非常基础版本的程序示例,它会用Python的moviep…

String类知识

目录 一、String存在意义 二、字符串为何不可变 三、String类常用方法 1、字符串构造 2、String对象的比较 3、字符串查找 4、转化 (1)数值和字符转化 (2)大小写转换 (3)字符串转数组 (4&…

《精通ChatGPT:从入门到大师的Prompt指南》大纲目录

第一部分:入门指南 第1章:认识ChatGPT 1.1 ChatGPT是什么 1.2 ChatGPT的应用领域 1.3 为什么需要了解Prompt 第2章:Prompt的基本概念 2.1 什么是Prompt 2.2 好Prompt的特征 2.3 常见的Prompt类型 第二部分:Prompt设计技巧 第…

【Linux取经路】守护进程

文章目录 一、前台进程和后台进程二、Linux 的进程间关系三、setsid——将当前进程设置为守护进程四、daemon——设置为守护进程五、结语 一、前台进程和后台进程 Linux 中每一次用户登录都是一个 session,一个 session 中只能有一个前台进程在运行,键盘…

【Linux】进程切换环境变量

目录 一.进程切换 1.进程特性 2.进程切换 1.进程切换的现象 2.如何实现 3.现实例子 2.环境变量 一.基本概念 二.常见环境变量 三.查询常见环境变量的方法 四.和环境变量相关的命令 五.环境变量表的组织方式 六.使用系统调用接口方式查询环境变量 1.getenv 2.反思 …

高校运维赛 2024 pyssrf

没有环境,简单过一遍思路吧 考点: pickle反序列化urllib库注入redis缓存 from flask import Flask,request from redis import Redis import hashlib import pickle import base64 import urllib app Flask(__name__) redis Redis(host127.0.0.1, port6379)def get_result(u…

超越预期:Containerd 如何成为 Kubernetes 的首选容器运行时

> 作者:尹珉,KubeSphere Ambassado,rKubeSphere Contributor,KubeSphere 社区用户委员会杭州站站长。 踏上 Containerd 技术之旅 容器技术已经成为现代软件开发和部署的核心工具。通过容器,开发者可以创建轻量级…

【研发日记】Matlab/Simulink软件优化(二)——通信负载柔性均衡算法

文章目录 前言 背景介绍 初始代码 优化代码 分析和应用 总结 前言 见《【研发日记】Matlab/Simulink软件优化(一)——动态内存负荷压缩》 背景介绍 在一个嵌入式软件开发项目中,需要设计一个ECU节点的CAN网路数据发送,需求是在500k的通信波特率上&a…

Python logging 模块详解

Python 的 logging 模块提供了一个强大而灵活的日志系统。它是 Python 标准库的一部分,因此可以在任何 Python 程序中使用。logging 模块提供了许多有用的功能,包括日志消息的级别设置、日志消息的格式设置、将日志消息输出到不同的目标,以及…

Mysql8安装教程与配置(超详细图文)

MySQL 8.0 是 MySQL 数据库的一个重大更新版本,它引入了许多新特性和改进,旨在提高性能、安全性和易用性。 1.下载MySQL 安装包 注:本文使用的是压缩版进行安装。 (1)从网盘下载安装文件 点击此处直接下载 &#…

Android 开机动画的启动过程BootAnimation(基于Android10.0.0-r41)

文章目录 Android 开机动画的启动过程BootAnimation(基于Android10.0.0-r41)1.开机动画的启动过程概述2.为什么设置了属性之后就会播放? Android 开机动画的启动过程BootAnimation(基于Android10.0.0-r41) 1.开机动画的启动过程概述 下面就是BootAnimation的重要部…

KIBANA的安装教程(超详细)

前言 Kibana 是一个开源的基于浏览器的可视化工具,主要用于分析和展示存储在 Elasticsearch 索引中的数据。它允许用户通过各种图表、地图和其他可视化形式来探索和理解大量数据。Kibana 与 Elasticsearch 和 Logstash 紧密集成,共同构成了所谓的 ELK 堆…

【论文阅读】SELF-RAG,让模型决策和反思检索

关于LLM何时使用RAG的问题,原本是阅读了关于ADAPT-LLM模型的那篇论文,被问到与SELF-RAG有何区别。所以,大概看了一下SELF-RAG这篇论文,确实很像,这些基于LLM针对下游任务的模型架构和方法,本来就很像。不过…

[AVL数四种旋转详细图解]

文章目录 一.右单旋二. 左单旋三. 右左双旋四. 左右双旋 一.右单旋 新节点插入较高左子树的左侧—左左:右单旋 由于在较高左子树的左侧插入一个节点后,左边插入导致30的平衡因子更新为-1,而60平衡因子更新为-2,此时不平衡&…

oracle数据库通过impdp导入数据时提示,ORA-31684:对象类型用户xxx已存在,和ORA-39151:表xxx存在的解决办法

前提条件:首先备份原数据库中此用户对应的schemas 比如名为cams_wf的schemas 以便出了问题后还可以恢复原数据。 解决办法一、 通过命令或者数据库管理工具删除掉此schemas下的所有表,然后在impdp中加入ignorey 来忽略ORA-31684:对象类型用…

Signac|成年小鼠大脑 单细胞ATAC分析(1)

引言 在本教程中,我们将探讨由10x Genomics公司提供的成年小鼠大脑细胞的单细胞ATAC-seq数据集。本教程中使用的所有相关文件均可在10x Genomics官方网站上获取。 本教程复现了之前在人类外周血单核细胞(PBMC)的Signac入门教程中执行的命令。…

Spring运维之boot项目bean属性的绑定读取与校验

第三方bean属性的绑定 先写一个实体类 我们在配置yml文件里写了属性值 能一一对应 我们用注解让其对应 我们在启动类里面测试 我们首先拿到容器对象 再拿到bean 打印bean 发现我们的容器获取到的bean bean的属性与配置里面的属性一一对应 这时候提出一个问题 这是我们自定义…

C++设计模式-外观模式,游戏引擎管理多个子系统,反汇编

运行在VS2022,x86,Debug下。 30. 外观模式 为子系统定义一组统一的接口,这个高级接口会让子系统更容易被使用。应用:如在游戏开发中,游戏引擎包含多个子系统,如物理、渲染、粒子、UI、音频等。可以使用外观…