【机器学习】GLM4-9B-Chat大模型/GLM-4V-9B多模态大模型概述、原理及推理实战

​​​​​​​

目录

一、引言

二、模型简介

2.1 GLM4-9B 模型概述

2.2 GLM4-9B 模型架构

三、模型推理

3.1 GLM4-9B-Chat 语言模型

3.1.1 model.generate

 3.1.2 model.chat

3.2 GLM-4V-9B 多模态模型

3.2.1 多模态模型概述

3.2.2 多模态模型实践

四、总结


 

一、引言

周一(6.3)写完【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战 ,周二(6.4)首次拿下CSDN热榜第一名,周三(6.5)清华智谱宣布开源GLM-4-9B,今天周四(6.6)马不停蹄开始部署实验+码字。

自ZHIPU AI于2023年3月14日发布ChatGLM-6B,截止目前,该系列已经发布了4代:ChatGLM-6B、ChatGLM2-6B、ChatGLM3-6B以及最新发布的GLM-4-9B。

二、模型简介

2.1 GLM4-9B 模型概述

GLM4-9B相较于上一代ChatGLM3-6B,主要有以下几点变更:

  • 预训练数据量提升3倍:在预训练方面,引入了大语言模型进入数据筛选流程,最终获得了 10T 高质量多语言数据。
  • 训练效率提高了 3.5 倍:采用了 FP8 技术进行高效的预训练,相较于第三代模型,训练效率提高了 3.5 倍。
  • 模型规模提升至 9B:在有限显存的情况下,探索了性能的极限,并发现 6B 模型性能有限。因此,在考虑到大多数用户的显存大小后,将模型规模提升至 9B,并将预训练计算量增加了 5 倍。

综合以上技术升级和其他经验,GLM-4-9B 模型具备了更强大的推理性能更长的上下文处理能力多语言多模态All Tools 等突出能力。GLM-4-9B 系列模型包括:

  • 基础版本 GLM-4-9B(8K):基础版本。
  • 对话版本 GLM-4-9B-Chat(128K):人类偏好对齐的版本。除了能进行多轮对话,还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。
  • 超长上下文版本 GLM-4-9B-Chat-1M(1M):支持 1M 上下文长度(约 200 万中文字符)。
  • 多模态版本 GLM-4V-9B-Chat(8K): 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力。

官方能力缩影图如下:

2.2 GLM4-9B 模型架构

GLM模型从发布之初,最主要的特点是将encoder-decoder相结合:

  • 自编码:随机 MASK 输入中连续跨度的 token
  • 自回归:基于自回归空白填充的方法重新构建跨度中的内容

具体模型,这里看一下“原地漫游”大佬在ChatGLM2-6B模型推理流程和模型架构详解 中做的GLM架构图:

架构中包含输入层、Embedding层、GLMBlock*28层、RMS层、输出层,以及Residual网络和Rope。其中最核心的在于GLMBlock*28

  • 输入层
    • Tokenizer:将输入的文本序列转换为字或词标记的序列
    • Input_ids:将Tokenizer生成的词标记ID化。
  • Embedding层
    • 将每个ID映射到一个固定维度的向量,生成一个向量序列作为模型的初始输入表示
  • GLMBlock*28:重复28次,类似qwen1.5中将layer堆叠,包含2个大部分
    • Self-Attention:先将输入进行Q、K、V矩阵映射,引入RoPE位置网络后,再进行attention注意力计算,最后线性变换为输入同样的维度。输出后引入残差网络、Dropout、RMSNorm等方法方式过拟合。
    • Feed-Forward Network (MLP):经过两层全连接变换,最多扩至13696维度(GLM4,ChatGLM3均为13696,ChatGLM2是27392),提升表征能力。激活函数使用Swiglu代替Relu。与self-attention的输出后一样,同样引入Dropout、RMSNorm方法。
  • RMSNorm层:标准化,这里使用RMSNorm(均方根标准化)代替LayerNorm(层标准化),具有加速训练和改善模型的泛化能力的效果,在实际的推荐系统工作中经常用到BatchNorm(批量标准化),在神经元激活函数前,加上一个BN层,使得每个批次的神经元输出遵循标准正态分布,解决深度传播过程中随数据分布产生的协变量偏移问题。
  • 输出层:将将embedding转换会字词编码,之后decode为我们看到的文字。
  • Residual Connection:残差连接网络,在深度学习中经常用到的技巧,在神经网络的层与层之间添加一个直接的连接,允许输入信号无损地传递到较深的层。这样设计的目的是为了缓解梯度消失和梯度爆炸问题,同时促进梯度在深层网络中的流畅传播,使得训练更高效,模型更容易学习复杂的特征
  • Rotary Position Embedding(RoPE):旋转位置编码,Qwen、LLaMA也在用,可以更好的学习词之间的位置信息。

附GLMBlock官方源码:

class GLMBlock(torch.nn.Module):
    """A single transformer layer.
    Transformer layer takes input with size [s, b, h] and returns an
    output of the same size.
    """

    def __init__(self, config: ChatGLMConfig, layer_number, device=None):
        super(GLMBlock, self).__init__()
        self.layer_number = layer_number

        self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm

        self.fp32_residual_connection = config.fp32_residual_connection

        LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
        # Layernorm on the input data.
        self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
                                             dtype=config.torch_dtype)

        # Self attention.
        self.self_attention = SelfAttention(config, layer_number, device=device)
        self.hidden_dropout = config.hidden_dropout

        # Layernorm on the attention output
        self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
                                                      dtype=config.torch_dtype)

        # MLP
        self.mlp = MLP(config, device=device)

    def forward(
            self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
    ):
        # hidden_states: [s, b, h]

        # Layer norm at the beginning of the transformer layer.
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
        attention_output, kv_cache = self.self_attention(
            layernorm_output,
            attention_mask,
            rotary_pos_emb,
            kv_cache=kv_cache,
            use_cache=use_cache
        )

        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = hidden_states

        layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
        layernorm_input = residual + layernorm_input

        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

        # MLP.
        mlp_output = self.mlp(layernorm_output)

        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
            residual = layernorm_output
        else:
            residual = layernorm_input

        output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
        output = residual + output

        return output, kv_cache

 ​​​​​​​附GLMBlock大图(by 原地漫游):

三、模型推理

3.1 GLM4-9B-Chat 语言模型

以为官方样例代码直接就能跑,结果由于网络、GPU、依赖包版本问题卡了好久(有趣的是,GLM卡了太长时间,于是先去Qwen1.5官网找了源码,调通后平移到GLM。这怎么评价呢):

  • 网络:使用modelscope代替huggingface下载模型
  • GPU:transformers支持多种GPU指定方式,这里用到了两种,均以字符串"cuda:2"形式指定
    • tokenizer或model变量后加.to("cuda:2")方法
    • 在from_pretrained里加入device_map="cuda:2"参数。
  • pip安装依赖包:transformers、mdeolscope、torch==2.3.0、torchvision==0.18.0,最好用腾讯源安装,节约很多时间
 pip install torch==2.3.0 -i https://mirrors.cloud.tencent.com/pypi/simple

3.1.1 model.generate

需要apply_chat_template(应用对话模版)引入对话messages数组以及设置add_generation_prompt=True对含有对话角色的message输入进行解析处理。大致意思就是将多个对话安装顺序展开成一行,并在每个角色对话之间加入“特殊符号”分割区分。具体可以参考如何设置transformers的聊天模板chat_template?

from modelscope import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM
model_dir = snapshot_download('ZhipuAI/glm-4-9b-chat')
import torch

device = "cuda:2" # the device to load the model onto

tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)

prompt = "介绍一下大语言模型"
messages = [
    {"role": "system", "content": "你是一个智能助理."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

model = AutoModelForCausalLM.from_pretrained(
    model_dir,
    device_map="cuda:2",
    trust_remote_code=True
)

gen_kwargs = {"max_length": 512, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**model_inputs, **gen_kwargs)
    outputs = outputs[:, model_inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

"""
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

"""

运行结果如下: 

共计消耗GPU显存18G 

 

 3.1.2 model.chat

 代码干净简洁好理解,并可以轻松实现多轮对话。只需要实例化tokenizer和model就可以了。ChatGLM和Qwen1.0早期均采用model.chat直接生成对话作为样例,后来可能系统提示词system prompt太刚需了,所以都采用apply_chat_template了。是这样吗?

from modelscope import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM
model_dir = snapshot_download('ZhipuAI/glm-4-9b-chat')


#from modelscope import AutoModelForCausalLM, AutoTokenizer
#from modelscope import GenerationConfig

tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="cuda:2", trust_remote_code=True, torch_dtype=torch.bfloat16).eval()
#model.generation_config = GenerationConfig.from_pretrained("ZhipuAI/glm-4-9b-chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参

response, history = model.chat(tokenizer, "你好", history=None)
print(response)
response, history = model.chat(tokenizer, "浙江的省会在哪里?", history=history) 
print(response)
response, history = model.chat(tokenizer, "它有什么好玩的景点", history=history)
print(response)

多轮对话结果: 

 

3.2 GLM-4V-9B 多模态模型

同时,GLM还发布了图像识别大模型GLM-4V-9B(8K):

3.2.1 多模态模型概述

该模型采用了与CogVLM2相似的架构设计,能够处理高达1120 x 1120分辨率的输入,并通过降采样技术有效减少了token的开销。为了减小部署与计算开销,GLM-4V-9B没有引入额外的视觉专家模块,采用了直接混合文本和图片数据的方式进行训练,在保持文本性能的同时提升多模态能力。

3.2.2 多模态模型实践

上自己调通的代码:

from modelscope import snapshot_download
from transformers import AutoTokenizer, AutoModelForCausalLM
model_dir = snapshot_download('ZhipuAI/glm-4v-9b')
import torch
from PIL import Image

device = "cuda:2" # the device to load the model onto

tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True)

prompt = "描述一下这张图片"
image = Image.open("./test_pic.png").convert("RGB")
messages = [
    {"role": "user", "image":image,"content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

model = AutoModelForCausalLM.from_pretrained(
    model_dir,
    device_map="cuda:2",
    trust_remote_code=True
)

gen_kwargs = {"max_length": 512, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**model_inputs, **gen_kwargs)
    outputs = outputs[:, model_inputs['input_ids'].shape[1]:]
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

"""
generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

"""

不过官方表示,GLM-4V-9B参数量达到13B,之前baichuan2-13B计算过,大概需要13*2.5=32.5G的显存,本人使用32B的单卡直接爆显存了。如果官方能看到,真希望再优化一丢丢。

四、总结

本文首先对GLM4-9B的模型特点及原理进行介绍,接着分别对GLM4-9B-Chat语言大模型和GLM-4V-9B多模态大模型进行代码实践。之前更多使用LLaMA_Factory、Xinference等框架对模型的Chat、Client及Api进行测试和部署,很多框架真的已经封装的非常易用(一件部署+前端管理),transformers原生版的反倒生疏了。最近正在夯实transformers库的知识,基础知识扎实在AI智能体开发过程中遇到问题才能游刃有余,上限更高。

期待您的关注+三连,您的鼓励让我创作更加充满动力!

如果您还有时间,可以看看我的其他文章:

《AI—工程篇》

AI智能体研发之路-工程篇(一):Docker助力AI智能体开发提效

AI智能体研发之路-工程篇(二):Dify智能体开发平台一键部署

AI智能体研发之路-工程篇(三):大模型推理服务框架Ollama一键部署

AI智能体研发之路-工程篇(四):大模型推理服务框架Xinference一键部署

AI智能体研发之路-工程篇(五):大模型推理服务框架LocalAI一键部署

《AI-模型篇》

AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用

AI智能体研发之路-模型篇(二):DeepSeek-V2-Chat 训练与推理实战

AI智能体研发之路-模型篇(三):中文大模型开、闭源之争

AI智能体研发之路-模型篇(四):一文入门pytorch开发

AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比

AI智能体研发之路-模型篇(六):【机器学习】基于tensorflow实现你的第一个DNN网络

AI智能体研发之路-模型篇(七):【机器学习】基于YOLOv10实现你的第一个视觉AI大模型

🏆AI智能体研发之路-模型篇(八):【机器学习】Qwen1.5-14B-Chat大模型训练与推理实战​​​​​​​ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/685488.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

cocos入门4:项目目录结构

Cocos Creator 项目结构教程 Cocos Creator 是一个功能强大的游戏开发工具,它为开发者提供了直观易用的界面和强大的功能来快速创建游戏。在使用 Cocos Creator 开发游戏时,合理地组织项目结构对于项目的可维护性和扩展性至关重要。以下是一个关于如何设…

49.线程池的关闭方法

shutdown方法 1.线程池状态变为shutdown 2.不会接收新任务 3.已提交的任务会执行完 4.此方法不会阻塞调用线程执行 ExecutorService executorService = Executors.newFixedThreadPool(2);executorService.submit(() -> {log.debug("task1 running");try {TimeUnit…

可视化数据科学平台在信贷领域应用系列五:零代码可视化建模

信贷风控模型是金融机构风险管理的核心工具,在信贷风险管理工作中扮演着至关重要的角色。随着信贷市场的环境不断变化,信贷业务的风险日趋复杂化和隐蔽化,开发和应用准确高效的信贷风控模型显得尤为重要。信贷风险控制面临着越来越大的挑战和…

Go实战 | 使用Go-Fiber采用分层架构搭建一个简单的Web服务

前言 📢博客主页:程序源⠀-CSDN博客 📢欢迎点赞👍收藏⭐留言📝如有错误敬请指正! 一、环境准备、示例介绍 Go语言安装,GoLand编辑器 这个示例实现了一个简单的待办事项(todo&#xf…

【Linux网络】传输层协议 - UDP

文章目录 一、传输层(运输层)运输层的特点复用和分用再谈端口号端口号范围划分认识知名端口号(Well-Know Port Number)两个问题① 一个进程是否可以绑定多个端口号?② 一个端口号是否可以被多个进程绑定? n…

暗黑系短视频:成都鼎茂宏升文化传媒公司

暗黑系短视频:探索未知的视觉艺术 在短视频盛行的今天,各种风格和主题的作品层出不穷,其中,暗黑系短视频以其独特的魅力和深度,成都鼎茂宏升文化传媒公司吸引了众多观众的关注。这类视频往往带有一种神秘、压抑的氛围…

规则引擎LiteFlow发布v2.12.1版本,决策路由特性

个人博客:无奈何杨(wnhyang) 个人语雀:wnhyang 共享语雀:在线知识共享 Github:wnhyang - Overview 简介 标题其实是不准确的,了解过的会知道在LiteFlow的2.12.0已经有了决策路由的特性&…

Redis-Cluster模式基操篇

一、场景 1、搞一套6个主节点的Cluster集群 2、模拟数据正常读写 3、模拟单点故障 4、在不停服务的情况下将集群架构改为3主3从 二、环境规划 6台独立的服务器,端口18001~18006 192.169.14.121 192.169.14.122 192.169.14.123 192.169.14.124 192.169.14.125 192…

XR模拟的巨大飞跃,Varjo如何塑造战斗机飞行员培训的未来

随着虚拟现实技术的不断发展,拥有直通功能的XR技术被广泛应用于各种虚拟培训项目之中,能够完美混合虚拟与现实环境的XR技术能够最大限度的优化培训效果并有效减少仿真培训中的成本消耗。 技术总部位于加利福尼亚州南旧金山的Aechelon是集培训、模拟和娱乐…

【简单讲解下TalkingData】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

PPT视频如何16倍速或者加速播放

有两种方式,一种是修改PPT本身,这种方式非常繁琐,不太推荐,还有一种就是修改视频本身,直接让视频是16倍速的视频即可。 如何让视频16倍速,我建议人生苦短,我用Python,几行代码&…

docker-compose部署 kafka 3.7 集群(3台服务器)并启用账号密码认证

文章目录 1. 规划2. 服务部署2.1 kafka-012.2 kafka-022.3 kafka-032.4 启动服务 3. 测试3.1 kafkamap搭建(测试工具)3.2 测试 1. 规划 服务IPkafka-0110.10.xxx.199kafka-0210.10.xxx.198kafka-0310.10.xxx.197kafkamp10.10.xxx.199 2. 服务部署 2.1…

Mysql学习(三)——SQL通用语法之DML

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 DML添加数据修改数据删除数据 总结 DML DML用来对数据库中表的数据记录进行增删改操作。 添加数据 -- 给指定字段添加数据 insert into 表名(字段1,字…

逻辑回归及python实现

概述 logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘xb,其中w和b是待求参数,其区别在于他们的因变量不同&#x…

Java Web学习笔记15——DOM对象

DOM: 概念:Document Object Model: 文档对象模型 将标记语言的各个组成部分封装为对应的对象: Document: 整个文档对象 Element:元素对象 Attribute: 属性对象 Text:文本对象 Comment&a…

STM32-16-ADC

STM32-01-认识单片机 STM32-02-基础知识 STM32-03-HAL库 STM32-04-时钟树 STM32-05-SYSTEM文件夹 STM32-06-GPIO STM32-07-外部中断 STM32-08-串口 STM32-09-IWDG和WWDG STM32-10-定时器 STM32-11-电容触摸按键 STM32-12-OLED模块 STM32-13-MPU STM32-14-FSMC_LCD STM32-15-DMA…

麒麟操作系统rpm ivh安装rpm包卡死问题分析

夜间变更开发反应,rpm -ivh 安装包命令夯死,无执行结果,也无报错 排查 : 1、top 查看无进程占用较高进程存在,整体运行平稳 2、df -h 查看磁盘并未占满 3、其他服务器复现该命令正常执行 4、ps -ef|grep rpm 查看安装命令仍在运行中 5、查看log日志,均正常并无不良日志…

【自然语言处理】【Scaling Law】语言模型物理学 第3.3部分:知识容量Scaling Laws

语言模型物理学3.3:知识容量Scaling Laws 论文名称:Physics of Language Models: Part 3.3, Knowledge Capacity Scaling Laws 论文地址:https://arxiv.org/pdf/2404.05405 相关博客 【自然语言处理】【Scaling Law】Observational Scaling …

表格中附件的上传、显示以及文件下载#Vue3#后端接口数据

表格中附件的上传及显示#Vue3#后端接口数据 一、图片上传并显示在表格中实现效果&#xff1a; 表格中上传附件 代码&#xff1a; <!-- 文件的上传及显示 --> <template><!-- 演示地址 --><div class"dem-add"><!-- Search start -->…

生信学习入门常见错误可能的原因分类总结和求助指南

文件或目录找不到 这是常见问题&#xff0c;常见提示有 No such file or directory Error in file(file, “rt”)&#xff1a;无法打开链接 Fatal error: Unable to open file for reading (seq/WT1_1.fq) Fatal error: Unable to read from file (C:Program file/Git/usea…