python常见数据分析函数

apply

DataFrame.apply(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)
第一个参数是函数
可以在Series或DataFrame上执行一个函数
支持对行、列或单个值进行处理

import numpy as np
import pandas as pd

f = lambda x: x.max()-x.min()
 
df = pd.DataFrame(np.random.randn(4,3),columns=list('bde'),index=['utah', 'ohio', 'texas', 'oregon'])
print(df)
'''
            b         d         e
utah   -0.631142  0.081229 -0.791898
ohio    1.571634  0.801737  1.478349
texas  -0.408345 -1.920296  1.001519
oregon  0.013308  2.496898 -0.580166
'''
 
t1 = df.apply(f)
print(t1)
'''
b    2.202776
d    4.417194
e    2.270247
dtype: float64
'''
t2 = df.apply(f, axis=1)
print(t2)
'''
utah      0.873127
ohio      0.769897
texas     2.921815
oregon    3.077063
dtype: float64
'''




df = pd.read_csv('C:/data/temp.csv')
df.apply(['max', 'min'])
'''
        name team  Q1  Q2  Q3  Q4
max  Zachary    E  98  99  99  99
min    Aaron    A   1   1   1   2
'''

df.apply({'Q1':'max', 'Q2': 'min'})
'''
Q1    98
Q2     1
dtype: int64
'''

df.apply({'Q1':'mean', 'Q2': ['max', 'min']})
'''
        Q1    Q2
mean  49.2   NaN
max    NaN  99.0
min    NaN   1.0
'''


df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])
df
'''   A  B
0  4  9
1  4  9
2  4  9
'''

# 使用numpy通用函数 (如 np.sqrt(df)):
df.apply(np.sqrt)
'''
     A    B
0  2.0  3.0
1  2.0  3.0
2  2.0  3.0
'''

# 使用聚合功能
df.apply(np.sum, axis=0)
'''
A    12
B    27
dtype: int64

agg/aggregate

DataFrame.agg(func, axis=0, *args, **kwargs)
func : function, str, list 或者 dict。用于聚合数据的函数。如果是函数,则必须在传递给 DataFrame 或传递给 DataFrame.apply。可接受的组合为:

  • 函数 function
  • 字符串函数名 string function name
  • 函数和/或函数名列表,如 [np.sum, ‘mean’]
  • 轴标签->函数、函数名称或此类列表的字典

axis : {0 or ‘index’, 1 or ‘columns’}, 默认 0

  • 如果 0 或者 ‘index’:将函数应用于每列
  • 如果 1 或者 ‘columns’: 将函数应用于每一行

Series.agg

s = pd.Series([1, 2, 3, 4])
s
'''
0    1
1    2
2    3
3    4
dtype: int64
'''

s.agg('min')
# 1

s.agg(['min', 'max'])
'''
min   1
max   4
dtype: int64
'''

# 指定索引名
s.agg(A=max)
'''
A    4
dtype: int64
'''
s.agg(Big=max, Small=min)
'''
Big      4
Small    1
dtype: int64
'''

DataFrame.agg

df = pd.DataFrame([[1, 2, 3],
                    [4, 5, 6],
                    [7, 8, 9],
                    [np.nan, np.nan, np.nan]],
                   columns=['A', 'B', 'C'])

# 在行上聚合这些函数
df.agg(['sum', 'min'])
'''
        A     B     C
sum  12.0  15.0  18.0
min   1.0   2.0   3.0
'''

# 每列有不同的聚合
df.agg({'A' : ['sum', 'min'], 'B' : ['min', 'max']})
'''
        A    B
sum  12.0  NaN
min   1.0  2.0
max   NaN  8.0
'''

# 在列上聚合
df.agg("mean", axis="columns")
'''
0    2.0
1    5.0
2    8.0
3    NaN
dtype: float64
'''

DataFrameGroupBy.agg

agg 可以为分组对象调用方法,与 DataFrame 的一点不同是,DataFrameGroupBy 对象在使用 agg 时可以指定计算引擎(engine 参数)和 引擎的参数(engine_kwargs)。
返回:DataFrame
aggregate(self, func=None,engine=None, engine_kwargs=None,*args, **kwargs)
engine:str, 默认 None,有:

  • ‘cython’ : 通过cython的C扩展执行函数
  • ‘numba’ : 通过numba中的JIT编译代码运行函数
  • None : 默认为 “cython” 或全局设置 compute.use_numba
df = pd.DataFrame(
    {
        "A": [1, 1, 2, 2],
        "B": [1, 2, 3, 4],
        "C": [0.362838, 0.227877, 1.267767, -0.562860],
    }
)

df
'''
   A  B         C
0  1  1  0.362838
1  1  2  0.227877
2  2  3  1.267767
3  2  4 -0.562860
'''

# 聚合是针对每个列的
df.groupby('A').agg('min')
'''
   B         C
A
1  1  0.227877
2  3 -0.562860
'''

# 多重聚合
df.groupby('A').agg(['min', 'max'])
'''
    B             C
  min max       min       max
A
1   1   2  0.227877  0.362838
2   3   4 -0.562860  1.267767
'''

# 选择要聚合的列
df.groupby('A').B.agg(['min', 'max'])
'''
   min  max
A
1    1    2
2    3    4
'''

# 每列的聚合不同
df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
'''
    B             C
  min max       sum
A
1   1   2  0.590715
2   3   4  0.704907
'''

grouped = df.groupby("A")# 分组对象
grouped["C"].agg([np.sum, np.mean, np.std])# 指定列,多个聚合
'''
	sum	mean	std
A			
1	0.590715	0.295357	0.095432
2	0.704907	0.352454	1.294449
'''
grouped.agg([np.sum, np.mean, np.std])# 所有列分别多个聚合
'''
	B						C
 	sum	mean	std	   		sum			mean		std
A						
1	3	1.5		0.707107	0.590715	0.295357	0.095432
2	7	3.5		0.707107	0.704907	0.352454	1.294449
'''

聚合滚动窗口 Rolling.agg

df = pd.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]})
df
'''
   A  B  C
0  1  4  7
1  2  5  8
2  3  6  9
'''

df.rolling(2).sum()
'''
     A     B     C
0  NaN   NaN   NaN
1  3.0   9.0  15.0
2  5.0  11.0  17.0
'''

df.rolling(2).agg({"A": "sum", "B": "min"})
'''
     A    B
0  NaN  NaN
1  3.0  4.0
2  5.0  5.0
'''

stack() 和 unstack()

stack() 函数会将数据从“表格结构”变成“花括号结构”,即将其行索引变成列索引,反之,
unstack() 函数将数据从“花括号结构”变成“表格结构”,即要将其中一层的列索引变成行索引。

在这里插入图片描述表格结构 在这里插入图片描述花括号结构

stack() 函数

DataFrame.stack(level=-1,dropna=True)

  • level:接收 int、str、list,默认为 -1,表示从列轴到索引轴堆叠的级别,定义为一个索引或标签,或者索引或标签列表;
  • dropna:接收布尔值,默认为 True,表示是否在缺失值的结果框架/系列中删除行。将列级别堆叠到索引轴上可以创建原始数据帧中缺失的索引值和列值的组合。

函数返回值为 DataFrame 或 Series。

unstack() 函数

DataFrame.unstack(level=-1, fill_value=None)
Series.unstack(level=-1, fill_value=None)

  • level:接收 int、string 或其中的列表,默认为 -1(最后一级),表示 unstack 索引的级别或级别名称。
  • fill_value:如果取消堆栈,则用此值替换 NaN 缺失值,默认为 None。

函数返回值为 DataFrame 或 Series。

import numpy as np
import pandas as pd
#创建DataFrame
data = pd.DataFrame(np.arange(4).reshape((2, 2)),
index=pd.Index(['row1', 'row2'], name='rows'),
columns=pd.Index(['one', 'two'], name='cols'))
print(data)
'''
cols one two
rows 
row1 0 1
row2 2 3
'''
#使用stack()函数改变data层次化结构
result = data.stack()
print('data改变成"花括号"结构','\n',result)
'''
data改变成"花括号"结构 
rows cols
row1 one 0
     two 1
row2 one 2
     two 3
'''
print('恢复到原来结构','\n',result.unstack())
'''
恢复到原来结构 
cols one two
rows 
row1  0  1
row2  2  3
'''
print(result.unstack(0))
'''
rows row1 row2
cols 
one  0   2
two  1   3
'''
print(result.unstack('rows'))
#创建Series
s1 = pd.Series([0, 1, 2, 3], index=['a', 'b', 'c', 'd'])
s2 = pd.Series([4, 5, 6], index=['c', 'd', 'e'])
data2 = pd.concat([s1, s2], keys=['one', 'two'])
print(data2)
'''
one  a    0
     b    1
     c    2
     d    3
two  c    4
     d    5
     e    6
dtype: int64
'''
print('将data2改变成表格结构','\n',data2.unstack())
'''
将data2改变成表格结构 
        a    b    c    d    e
one  0.0  1.0  2.0  3.0  NaN
two  NaN  NaN  4.0  5.0  6.0
'''
#使用stack()函数改变成"花括号"结构,并删除缺失值行
print(data2.unstack().stack())
 '''
 one  a    0.0
     b    1.0
     c    2.0
     d    3.0
two  c    4.0
     d    5.0
     e    6.0
dtype: float64
'''
#使用stack()函数改变成"花括号"结构,不删除缺失值行
print(data2.unstack().stack(dropna=False))
'''
one  a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    NaN
two  a    NaN
     b    NaN
     c    4.0
     d    5.0
     e    6.0
dtype: float64
'''
#用字典创建DataFrame
df = pd.DataFrame({'left': result, 'right': result + 3},
columns=pd.Index(['left', 'right'], name='side'))
print(df)
'''
side       left  right
rows cols             
row1 one      0      3
     two      1      4
row2 one      2      5
     two      3      6
'''
#使用unstack()、stack()函数
print(df.unstack('rows'))
'''
side left      right     
rows row1 row2  row1 row2
cols                     
one     0    2     3    5
two     1    3     4    6
'''
print(df.unstack('rows').stack('side'))
'''
rows        row1  row2
cols side             
one  left      0     2
     right     3     5
two  left      1     3
     right     4     6
'''

concat()和merge()

  • 轴向连接(concatenation): pd.concat() 可以沿一个轴将多个DataFrame对象连接在一起, 形成一个新的Dataframe对象
  • 融合(merging):pd.merge()方法可以根据一个或多个键将不同DataFrame中的行连接起来。

concat() 轴向连接

concat() 函数可以将数据根据不同的轴作进行合并

pd.concat(objs, axis=0, join=‘outer’)

  • objs: series、dataframe或者是panel构成的序列list
  • axis: 需要合并链接的轴,0是行,1是列,默认是0
  • join:连接的方式 inner:得到的是两表的交集,或者outer:得到的是两表的并集,默认是outer;

join=‘outer’,axis=0

当join=‘outer’,axis参数为0时,列进行并集处理,纵向表拼接,缺失值由NaN填充,并且会保留原有数据的行索引

dict1={
    'A': ['A0', 'A1', 'A2', 'A3'],
    'B': ['B0', 'B1', 'B2', 'B3'],
    'C': ['C0', 'C1', 'C2', 'C3']}
df1=pd.DataFrame(dict1)

dict2={
    'B': ['B0', 'B1', 'B2', 'B3'],
    'C': ['C0', 'C1', 'C2', 'C3'],
    'D': ['D0', 'D1', 'D2', 'D3']}
df2=pd.DataFrame(dict2)
pd.concat([df1, df2], axis=0, join='outer')
'''
	A	B	C	D
0	A0	B0	C0	NaN
1	A1	B1	C1	NaN
2	A2	B2	C2	NaN
3	A3	B3	C3	NaN
0	NaN	B0	C0	D0
1	NaN	B1	C1	D1
2	NaN	B2	C2	D2
3	NaN	B3	C3	D3
'''
pd.concat([df1,df2],axis=0,join='outer',ignore_index=True) # 使用ignore_index参数置为 true, 重新生成一个新的index
'''
	A	B	C	D
0	A0	B0	C0	NaN
1	A1	B1	C1	NaN
2	A2	B2	C2	NaN
3	A3	B3	C3	NaN
4	NaN	B0	C0	D0
5	NaN	B1	C1	D1
6	NaN	B2	C2	D2
7	NaN	B3	C3	D3
'''

join=‘outer’,axis=1

当join=‘outer’,axis参数为1时,行进行并集处理,横向表拼接,缺失值由NaN填充

pd.concat([df1,df2],axis=1,join='outer') 
'''
	A	B	C	B	C	D
0	A0	B0	C0	B0	C0	D0
1	A1	B1	C1	B1	C1	D1
2	A2	B2	C2	B2	C2	D2
3	A3	B3	C3	B3	C3	D3
'''

join=inner, axis=0

pd.concat([df1,df2],axis=0,join='inner',ignore_index=True)
'''
B	C
0	B0	C0
1	B1	C1
2	B2	C2
3	B3	C3
4	B0	C0
5	B1	C1
6	B2	C2
7	B3	C3
'''

merge() 融合

merge(left, right, how=‘inner’, on=None)

  • left和right, 两个要合并的DataFrame(对应的左连接和右连接)
  • how: 连接的方式, 有inner(内连接)、left(左连接)、right(右连接)、outer(外连接), 默认为 inner
  • on: 指的是用于连接的列索引名称, 必须存在于左右两个DataFrame中, 如果没有指定且其他参数也没有指定,则两个DataFrame列名交集作为连接键

inner(内连接)

merge()默认做inner连接,并且使用两个DataFrame的列名交集(key)作为连接键,同样,最终连接的数据也是两个DataFramekey列数据的交集

dict1={
    'A': ['A0', 'A1', 'A2', 'A3'],
    'B': ['B0', 'B1', 'B2', 'B3'],
    'C': ['C0', 'C1', 'C2', 'C3']}
df1=pd.DataFrame(dict1)
df1
'''
	A	B	C
0	A0	B0	C0
1	A1	B1	C1
2	A2	B2	C2
3	A3	B3	C3
'''

dict2={
    'B': ['B0', 'B1', 'B4', 'B5'],
    'C': ['C0', 'C1', 'C2', 'C3'],
    'D': ['D0', 'D1', 'D2', 'D3']}
df2=pd.DataFrame(dict2)
df2
'''
	B	C	D
0	B0	C0	D0
1	B1	C1	D1
2	B4	C2	D2
3	B5	C3	D3
'''
pd.merge(df1,df2)
'''
	A	B	C	D
0	A0	B0	C0	D0
1	A1	B1	C1	D1
'''

outer (外连接)

当merge()做outer连接时最终连接的数据是两个DataFramekey列数据的并集,缺失的内容由NaN填充

pd.merge(df1,df2,on=['B','C'],how='outer')
'''
	A	B	C	D
0	A0	B0	C0	D0
1	A1	B1	C1	D1
2	A2	B2	C2	NaN
3	A3	B3	C3	NaN
4	NaN	B4	C2	D2
5	NaN	B5	C3	D3
'''

left(左连接)

当merge()做left连接时,最终连接的数据将以left数据的链接建为准合并两个数据的列数据,缺失的内容由NaN填充

pd.merge(df1,df2,on=['B'],how='left')
'''
	A	B	C_x	C_y	D
0	A0	B0	C0	C0	D0
1	A1	B1	C1	C1	D1
2	A2	B2	C2	NaN	NaN
3	A3	B3	C3	NaN	NaN
'''

right (右连接)

当merge()做right连接时,最终连接的数据将以right数据的链接建为准合并两个数据的列数据,缺失的内容由NaN填充

pd.merge(df1,df2,on=['B'],how='right')
'''
	A	B	C_x	C_y	D
0	A0	B0	C0	C0	D0
1	A1	B1	C1	C1	D1
2	NaN	B4	NaN	C2	D2
3	NaN	B5	NaN	C3	D3
'''

应用场景

1)两张同类型的表合并成一张表,可使用concat( )将两个表沿着0轴合并;
2)两张相互关联的表(如用户信息、订单信息) 需要关联生成一张完整的表,可使用merge()根据用户ID将两个表合并成一个完整的表;

lambda

语法格式:lambda arguments: expression

  • lambda是 Python 的关键字,用于定义 lambda 函数。
  • arguments 是参数列表,可以包含零个或多个参数,但必须在冒号(:)前指定。
  • expression 是一个表达式,用于计算并返回函数的结果。
f = lambda: "Hello, world!"
print(f())  # 输出: Hello, world!

x = lambda a : a + 10
print(x(5))#输出:15

x = lambda a, b, c : a + b + c
print(x(5, 6, 2))##  输出: 13

lambda 函数通常与内置函数如 map()、filter() 和 reduce() 一起使用,以便在集合上执行操作

map()函数逐一处理

numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, numbers))
print(squared)  # 输出: [1, 4, 9, 16, 25]

filter()筛选

numbers = [1, 2, 3, 4, 5, 6, 7, 8]
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(even_numbers)  # 输出:[2, 4, 6, 8]

reduce() 累计计算

from functools import reduce
numbers = [1, 2, 3, 4, 5]
# 使用 reduce() 和 lambda 函数计算乘积
product = reduce(lambda x, y: x * y, numbers)
print(product)  # 输出:120

query数据筛选

query()方法允许你使用字符串表达式来筛选DataFrame的行。这个表达式类似于你在Python中使用的常规表达式,但是它专门针对DataFrame的列名和值。

import pandas as pd

# 创建一个示例DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
    'C': ['p', 'q', 'r', 's']
}
df = pd.DataFrame(data)

# 使用query()方法筛选A列大于2的行
filtered_df = df.query('A > 2')
print(filtered_df)
'''
   A  B  C
2  3  7  r
3  4  8  s
'''

import pandas as pd

# 创建一个示例DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
    'C': ['p', 'q', 'r', 's']
}
df = pd.DataFrame(data)

#两者都需要满足的并列条件使用符号 &,或 单词 and
#只需要满足其中之一的条件使用符号 |,或 单词 or
# 筛选A列大于2且B列小于等于7的行
filtered_df = df.query('A > 2 and B <= 7')
print(filtered_df)
'''
   A  B  C
2  3  7  r
'''

import pandas as pd

# 创建一个示例DataFrame
data = {
    'A': [1, 2, 3, 4],
    'B': [5, 6, 7, 8],
    'C': ['p', 'qu', 'r', 's']
}
df = pd.DataFrame(data)

# 筛选C列以'q'开头的行
filtered_df = df.query('C.str.startswith("q")')
print(filtered_df)
'''
   A  B   C
1  2  6  qu

'''

# 通过变量来筛选数据,在变量前使用 @ 符号即可
name = 'Python数据之道'
df.query('brand == @name')

# 当需要在某列中筛选多个符合要求的值的时候,可以通过列表(list)来实现;需要注意下 双引号 和 单引号的分开使用
df.query('brand in ["Python数据之道","价值前瞻"]')
# df.query("brand in ['Python数据之道','价值前瞻']")

query()方法还可以与其他pandas功能(如groupby()、sort_values()等)结合使用,以执行更复杂的数据操作。

import pandas as pd

# 创建一个示例DataFrame
data = {
    'A': [1, 1, 2, 2, 3, 3, 4, 4],
    'B': [5, 6, 6, 7, 7, 8, 8, 9],
    'C': ['p', 'q', 'r', 's', 'p', 'q', 'r', 's']
}
df = pd.DataFrame(data)

# 按A列分组,并在每个组内筛选B列的最大值
grouped_df = df.groupby('A').apply(lambda x: x.query('B == B.max()'))
print(grouped_df)
'''
     A  B  C
A           
1 1  1  6  q
2 3  2  7  s
3 5  3  8  q
4 7  4  9  s

'''

Sample

random.sample()

random.sample(population, k)

  • 参数population表示要从中进行抽样的序列,可以是一个列表、元组或集合等可迭代对象。
  • 参数k表示要抽取的样本数量,必须是一个非负整数且不大于population的长度。
  • 无重复抽样
import random
colors = ['red', 'blue', 'green', 'yellow', 'orange']
sample_colors = random.sample(colors, 2)
print(sample_colors)   # 输出类似 ['yellow', 'blue']

choices()重复抽样

需要指定抽样次数k(k命名参数),并通过参数weights来为每个元素指定权重(默认情况下,每个元素的权重相等)

import random
x = ['apple', 'banana', 'cherry']
print(random.choices(x, weights = [10, 1, 1], k = 3))
# 输出可能为:['apple', 'banana', 'apple'], ['apple', 'apple', 'cherry']等

DataFrame 对象的方法

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

  • n(int或None):指定要抽取的样本数量。如果指定了 n,则 frac 应设置为 None。
  • frac(float或None):指定要抽取的样本占原数据框的比例。可以是小数,表示抽取的比例,例如 frac=0.25 表示抽取 25% 的样本。如果同时指定了 n 和 frac,将使用 frac 参数。
  • replace(bool,默认为False):控制是否允许重复抽样。 True:则允许同一样本被抽取多次; False:不允许重复抽样。
  • weights(str或数组型,默认为None):指定每个样本的权重。可以是列名,指示样本权重的列,也可以是权重数组。
  • random_state(int或RandomState实例或None,默认为None):控制随机抽样的随机化过程。指定一个整数可实现可重复的随机抽样。
  • axis({0或‘index’,1或‘columns’},默认为0):指定抽样的轴。如果为 0 或 ‘index’,则在行上进行抽样;如果为 1 或 ‘columns’,则在列上进行抽样。
import pandas as pd
 
df = pd.read_csv('C:/Users/Admin/Desktop/data.txt', sep='\t')
 
# 从数据框中抽取10个样本
sampled_data = df.sample(n=10)
 
# 从数据框中抽取总样本的30%
sampled_data_frac = df.sample(frac=0.3)
 
# 从数据框中进行有放回抽样(允许重复)
sampled_with_replacement = df.sample(n=10, replace=True)
 
# 指定每个样本的权重进行抽样
sampled_with_weights = df.sample(n=10, weights='column_with_weights')
 
# 指定随机种子以实现可重复抽样
sampled_with_seed = df.sample(n=10, random_state=42)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/676354.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring Cloud学习笔记(Nacos):Nacos持久化(未完成)

这是本人学习的总结&#xff0c;主要学习资料如下 - 马士兵教育 1、Overview2、单机使用MySQL 1、Overview 我们关闭单机下的Nacos后&#xff0c;再重新启动会发现之前配置的内容没有被删除。这时因为Nacos有内嵌的数据库derby&#xff0c;会自己持久化。 但是在集群的情况下…

【用户画像】用户偏好购物模型BP

一、前言 用户购物偏好模型BP&#xff08;Buyer Preferences Model&#xff09;旨在通过对用户购物行为的深入分析和建模&#xff0c;以量化用户对不同商品或服务的偏好程度。该模型对于电商平台、零售商以及其他涉及消费者决策的商业实体来说&#xff0c;具有重要的应用价值。…

尝试编译 AMD ROCm 的 llvm-project

0&#xff0c;环境 ubuntu 22.04 gcc-11 x86_64 18cores/36threads 256GB RAM rocm 6.0.2 Radeon VII 1&#xff0c;第一次尝试 构建命令&#xff1a; cmake -G "Unix Makefiles" ../llvm \ -DLLVM_ENABLE_PROJECTS"clang;lld;lldb;mlir;openmp" \…

TCP报头

TCP报头 一:TCP报头1.1: 16位源端口号 && 16位目的端口号1.2: 选项1.3: 4位首部长度1.4: 保留位1.5 :标志位1.6: 16位窗口大小1.7: 16位紧急指针1.8: 32位序号 && 32位确认序号1.9: 16位校验和二级目录 一级目录二级目录二级目录二级目录 一级目录一级目录一级…

[GeoServer系列]Shapefile数据发布

【GeoServer系列】——安装与发布shapefile数据-CSDN博客 将待发布数据放置指定目录下 webapps\geoserver\data\data 创建存储仓库 新建矢量数据源 发布图层 设置边框 设置样式 使用 方式1 let highRoad new Cesium.WebMapServiceImageryProvider({url: http://local…

一维时间序列信号的奇异小波时频分析方法(Python)

最初的时频分析技术就是短时窗傅里叶变换STFT&#xff0c;由于时窗变短&#xff0c;可供分析的信号量减少&#xff0c;采用经典的谱估算方法引起的误差所占比重会增加。且该短时窗一旦选定&#xff0e;则在整个变换过程中其时窗长度是固定的。变换后的时频分辨率也即固定&#…

分享两种论文降重最有效的方法(论文降重网站)

论文降重最有效的方法可以分为手动方法和使用降重网站两种方法。以下是详细的分析和归纳&#xff1a; 手动方法 删减冗余内容&#xff1a;对于论文中的某些内容&#xff0c;特别是信息冗余或不必要的描述&#xff0c;可以通过删减和简化来减少篇幅。确保每一段落和每一个例子都…

UI 自动化测试(Selenuim + Java )

关于 UI 自动化测试工具 selenuim Java 的环境搭建推荐看SeleniumJava 环境搭建 什么是自动化测试&#xff1f; 自动化测试指软件测试的自动化&#xff0c;在预设状态下运行应用程序或者系统&#xff0c;预设条件包括正常和异常&#xff0c;最后评估运行结果。将人为驱动的测…

AI大数据处理与分析实战--体育问卷分析

AI大数据处理与分析实战–体育问卷分析 前言&#xff1a;前一段时间接了一个需求&#xff0c;使用AI进行数据分析与处理&#xff0c;遂整理了一下大致过程和大致简要结果&#xff08;更详细就不方便放了&#xff09;。 文章目录 AI大数据处理与分析实战--体育问卷分析一、数据…

三十五、openlayers官网示例Dynamic Data——在地图上加载动态数据形成动画效果

官网demo地址&#xff1a; Dynamic Data 初始化地图 const tileLayer new TileLayer({source: new OSM(),});const map new Map({layers: [tileLayer],target: "map",view: new View({center: [0, 0],zoom: 2,}),}); 创建了三个样式 const imageStyle new Style(…

glibc backtrace backtrace_symbols 的应用示例

作用&#xff1a; 在一个函数调用栈中&#xff0c;输出 backtrace()函数返回时需要执行的下一条指令的地址&#xff0c;以及返回主调函数后的下一条指令的地址&#xff0c;递归上一步&#xff0c;直到从系统中链接进来的 _start() 为止。 1&#xff0c;示例先行 hello_glibc.…

动态sql set标签 , trim标签

set标签 来看例子 set标案解决了逗号问题(当if条件不满足时,逗号无处安放的问题),我认为set标签可以识别这个问题,并自动忽略这个问题 <update id"update">update employee<set><if test"name!null">name#{name},</if><if te…

vsode (Visual Studio Code) JS -- HTML 教程

vsode (Visual Studio Code) JS – HTML 教程 JavaScript 是什么 -JavaScript 是一种基于对象和事件驱动的脚本语言&#xff0c;广泛用于在网页上实现动态交互效果。JavaScript 可以嵌入到 HTML 页面中&#xff0c;通过在脚本标签中编写 JavaScript 代码来实现各种功能。它主要…

PCIe的链路状态

目录 概述 链路训练的目的 两个概念 下面介绍LTSSM状态机 概述 PCie链路的初始化过程较为复杂&#xff0c;Pcie总线进行链路训练时&#xff0c;将初始化Pcie设备的物理层&#xff0c;发送接收模块和相关的链路状态信息&#xff0c;当链路训练成功结束后&#xff0c;PCIe链…

心动(GDI+)

文章目录 前言实现步骤源代码心形坐标类心形函数定时器方法绘制函数完整源码 结束语 前言 近期学习了一段时间的GDI,突然想着用GDI绘制点啥&#xff0c;用来验证下类与方法。有兴趣的&#xff0c;可以查阅Windows GDI学习笔记相关文章。 效果展示 实现步骤 定义心形函数 。…

MobaXterm 连接时间太短,会自动断开

问题现象 MobaXterm成功连接到开发环境后&#xff0c;过一段时间会自动断开。 原因 配置MobaXterm工具时&#xff0c;没有勾选“SSH keepalive”或专业版MobaXterm工具的“Stop server after”时间设置太短。

C++ stack类与queue类

目录 0.前言 1.容器适配器 1.1容器适配器的特点 1.2容器适配器的实现 1.3使用容器适配器的场景 2.stack的介绍与使用 2.1介绍 2.2使用 3.queue的介绍与使用 3.1介绍 3.2使用 4.stack和queue的模拟实现 4.1 stack的模拟实现 4.2 queue的模拟实现 5.结语 &#xf…

探秘IPv6协议在车载网络的应用:打造智能出行新体验

绪论 1969年&#xff0c;互联网的前身——ARPANET成功地连接了四个关键节点&#xff1a;①加州大学洛杉矶分校、②斯坦福研究所、③加州大学圣巴巴拉分校、④犹他州大学。这四个节点的成功连接标志着分组交换&#xff08;Packet Switching&#xff09;网络的正式运行&#xff…

SpringBoot登录认证--衔接SpringBoot案例通关版

文章目录 登录认证登录校验-概述登录校验 会话技术什么是会话呢?cookie Session令牌技术登录认证-登录校验-JWT令牌-介绍JWT SpringBoot案例通关版,上接这篇 登录认证 先讲解基本的登录功能 登录功能本质就是查询操作 那么查询完毕后返回一个Emp对象 如果Emp对象不为空,那…

Android期末大作业:使用AndroidStudio开发图书管理系统APP(使用sqlite数据库)

Android Studio开发项目图书管理系统项目视频展示&#xff1a; 点击进入图书管理系统项目视频 引 言 现在是一个信息高度发达的时代&#xff0c;伴随着科技的进步&#xff0c;文化的汲取&#xff0c;人们对于图书信息的了解与掌握也达到了一定的高度。尤其是学生对于知识的渴…