基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB R2018A)

海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。

通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。

鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:

图片

 


function CM = hclustering(pixel_vector, Xd)

[ylen, xlen] = size(Xd);

% feature vectors are divided into three categories by using FCM

options = [2.0; 100; 1e-5; 0];

fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);

maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})
    ttr = numel(index{1})/(ylen*xlen)*1.25;
    ttl = numel(index{1})/(ylen*xlen)/1.10;
else
    ttr = numel(index{2})/(ylen*xlen)*1.25;
    ttl = numel(index{2})/(ylen*xlen)/1.10;
end

c_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);

Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);

Xdk = reshape(Xd, ylen*xlen, 1);

maxU = max(U);

for i = 1:c_num
    index{i} = find(U(i,:) == maxU);    
end

for i = 1:c_num
    idx_mean(i) = mean(Xdk(index{i}));
end

[idx_mean, idx] = sort(idx_mean);

for i = 1:c_num
    idx_num(i) = numel(index{idx(i)});
end

CMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;

for i = 1:c_num-1
    c = c+idx_num(c_num-i);
    if c / (ylen*xlen) < ttl
       CMk0(index{idx(c_num-i)}) = 0.0;
    elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttr
        CMk0(index{idx(c_num-i)}) = 0.5;
        mid_lab = 1;
    else
        if mid_lab == 0
            CMk0(index{idx(c_num-i)}) = 0.5;
            mid_lab = 1;
        else
            CMk0(index{idx(c_num-i)}) = 1;
        end
    end
end
基于卷积-小波神经网络的SAR图像海冰变化检测方法(MATLAB 2018)
原创2024-06-02 11:48·哥本哈根诠释2023
海冰是冰冻圈的重要组成部分,海冰的变化信息对航行安全和自然资源开采等非常重要,许多船舶没有加固防冰设备,因此,必须避开所有的冰区。尤其当冰压很高时,即使破冰船也很难在冰层中前行。为了安全航行,获取发生改变的冰层覆盖信息具有重要价值。通过分析在同一地理区域内不同时间拍摄的两张遥感图像来识别海冰中明显变化的区域,从而对海冰变化检测进行研究。合成孔径雷达SAR图像已被证明是海冰监测的理想来源,因其有源微波传感器,可以全天时主动获取地表遥感信息,且不受阳光条件和云层覆盖的影响。但也因其存在固有的乘性散斑噪声,为SAR图像的变化检测带来挑战性。由于缺乏强大的自动图像解读技术,依靠人工对SAR图像中的海冰变化信息进行检测耗时且主观。目前,现有的海冰变化检测方法还面临一些问题,如抗噪性能不强,差分图像质量不高,分类效果不好,以及海冰变化检测数据集稀少等。

通常图像的变化检测可分为监督和无监督方法。与监督方法相关的主要问题是缺乏地面参考数据,这通常涉及劳动密集型和耗时的人工标记过程。因此,无监督方法在该领域得到了广泛的发展和应用。无监督方法主要组成部分包括:图像预处理,差分图像生成,以及变化区域分割。图像预处理主要包括几何校正和去噪,在生成差分图像时,主要有差值法、比值法、对数比算子、均值比算子、基于邻域的比值差异法等。通常使用对数比算子,因为它对散斑噪声具有鲁棒性。图像分割阶段,聚类方法非常流行,聚类就是将数据集中大量未标注的数据按照某种相似性进行划分,并通过迭代运算调整优化聚类中心,将相似度大的数据划为一类,而不同类别之间的数据保持较大的差异性,因为它们不需要差分图像分布。

鉴于此,采用一种基于卷积-小波神经网络的SAR图像海冰变化检测方法,网络结构如下:



function CM = hclustering(pixel_vector, Xd)

[ylen, xlen] = size(Xd);

% feature vectors are divided into three categories by using FCM

options = [2.0; 100; 1e-5; 0];

fprintf('... ... 1st round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,2, options);

maxU = max(U);
index{1} = find(U(1,:) == maxU);
index{2} = find(U(2,:) == maxU);  
if numel(index{1})<numel(index{2})
    ttr = numel(index{1})/(ylen*xlen)*1.25;
    ttl = numel(index{1})/(ylen*xlen)/1.10;
else
    ttr = numel(index{2})/(ylen*xlen)*1.25;
    ttl = numel(index{2})/(ylen*xlen)/1.10;
end

c_num = 5;
fprintf('... ... 2nd round clustering ... ...\n');
[center,U,obj_fcn] = fcm(pixel_vector,c_num, options);

Xdk =  zeros(ylen*xlen, 1);
CMk0 = zeros(ylen*xlen, 1);

Xdk = reshape(Xd, ylen*xlen, 1);

maxU = max(U);

for i = 1:c_num
    index{i} = find(U(i,:) == maxU);    
end

for i = 1:c_num
    idx_mean(i) = mean(Xdk(index{i}));
end

[idx_mean, idx] = sort(idx_mean);

for i = 1:c_num
    idx_num(i) = numel(index{idx(i)});
end

CMk0(index{idx(c_num)}) = 0.0;
c = idx_num(c_num);
mid_lab = 0;

for i = 1:c_num-1
    c = c+idx_num(c_num-i);
    if c / (ylen*xlen) < ttl
       CMk0(index{idx(c_num-i)}) = 0.0;
    elseif c / (ylen*xlen) >= ttl && c / (ylen*xlen) < ttr
        CMk0(index{idx(c_num-i)}) = 0.5;
        mid_lab = 1;
    else
        if mid_lab == 0
            CMk0(index{idx(c_num-i)}) = 0.5;
            mid_lab = 1;
        else
            CMk0(index{idx(c_num-i)}) = 1;
        end
    end
end

CM = reshape(CMk0, ylen, xlen);
完整代码可通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

结果如下:

图片

图片

图片

工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/673035.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ctfshow-web入门-爆破(web21-web24)

目录 1、web21 2、web22 3、web23 4、web24 1、web21 爆破什么的&#xff0c;都是基操 需要认证才能访问 随便输一个用户名和密码抓包看看&#xff1a; 多出来一个认证的头 Authorization: Basic YWRtaW46MTIzNDU2 base64 解码看看&#xff1a; 就是我们刚才输入的用于测…

JVM之【运行时数据区2——堆】

三、堆&#xff08;Heap&#xff09; 1、什么是堆 在Java虚拟机&#xff08;JVM&#xff09;中&#xff0c;堆&#xff08;Heap&#xff09;是用于动态分配内存的区域。在Java程序运行时&#xff0c;所有对象和数组都是在堆中分配内存的。堆是Java内存模型的重要组成部分&…

云计算-云基础设施的配置 (Provisioning Cloud Infrastructure)

AWS CloudFormation (AWS CloudFormation) 它是一项服务&#xff0c;允许我们自动建模和配置所需的AWS资源。可以使用模板来实现这一目的。这个模板基本上是用JSON或YAML格式编写的。AWS CloudFormation会根据模板描述的内容来实施资源的配置和管理。我们可以成组配置和管理一组…

MySQL—函数—日期函数(基础)

一、引言 接下来讨论和学习关于函数的第三个方面——日期函数。 常见的MySQL当中的日期函数。 注意&#xff1a; 1、CURDATE()&#xff1a;cur&#xff1a;current 当前的&#xff0c;返回的是当前日期。 2、CURTIME()&#xff1a;当前时间。 3、NOW&#xff1a;当前的日期和…

一、实现一个简单的 Google Chrome 扩展程序

目录 &#x1f9ed; 效果展示 # 图示效果 a. 拓展程序列表图示效果&#xff1a; b. 当前选项卡页面右键效果&#xff1a; c. 拓展程序消息提示效果&#xff1a; &#x1f4c7; 项目目录结构 # 说明 # 结构 # 文件一览 ✍ 核心代码 # manifest.json # background.j…

Unity中帧动画素材的切割设置

有几个问题&#xff0c;美术在给我们帧动画的时候&#xff0c;一般都是给一个比较大的图&#xff0c;然后进行切割成多个sprite&#xff0c;导入到animation中 一般来说&#xff0c;进行那个autoSlide&#xff0c;自动切割就可以了 这个自动切割的图片会沿着有像素的最小包围…

内网-2(代理)

一、代理概述 1、代理服务器(proxy server)&#xff1a;代理网络用户去取得网络信息&#xff0c;介于浏览器与web服务器之间的一条服务器。 注&#xff1a;为了方便&#xff0c;以下用B来代表浏览器的主机&#xff0c;S来代表服务器的主机。 2、正向代理和反向代理 正向代…

车载诊断内容汇总(培训+视频)

车载诊断内容汇总 我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 屏蔽力是信息过载时代一个人的特殊竞争力&#xff0c;任何消耗你的人和事&#xff0c…

虚拟现实环境下的远程教育和智能评估系统(二)

本周进行开发工具&#xff0c;技术框架选择与学习&#xff1b;基本了解了以下技术框架的部署应用&#xff1b; 一、Springboot&#xff1a;最常用的后端框架之一&#xff0c;通过提供默认配置和自动配置&#xff0c;消除许多手动配置和样板代码&#xff0c;从而加速基于Spring…

CentOS7单用户模式,救援模式操作记录

CentOS7单用户模式&#xff0c;救援模式操作记录 1. 单用户模式 单用户模式进入不需要密码&#xff0c;无网络连接&#xff0c;拥有root权限&#xff0c;禁止远程登陆。一般用于用于系统维护&#xff0c;例如忘记root密码后可以通过进入单用户模式进行重置。 开机启动&#…

JVM运行时数据区 - 程序计数器

运行时数据区 Java虚拟机在执行Java程序的过程中&#xff0c;会把它管理的内存划分成若干个不同的区域&#xff0c;这些区域有各自的用途、创建及销毁时间&#xff0c;有些区域随着虚拟机的启动一直存在&#xff0c;有些区域则随着用户线程的启动和结束而建立和销毁&#xff0…

Unity DOTS技术(二)ECS

文章目录 一.ECS简介二.基本操作实例三.实体查看组件四.位置实体修改五.旋转实体六.了解原有属性七.禁止自动创建八.动态实例化 一.ECS简介 ECS全称 (Entity Component System).即(E:实体 C:组件 S:系统). 实际上即是数据方法分离.数据放在组件里,具体实现放在系统里.组件挂载…

遥感影像信息提取

刘老师&#xff08;副教授&#xff09;&#xff0c;来自双一流重点高校&#xff0c;长期从事GIS/RS/3S技术及其生态环境领域中的应用等方面的研究和教学工作&#xff0c;并参与GIS的二次开发&#xff0c;发表多篇sci论文&#xff0c;具有资深的技术底蕴和专业背景。 专题一&am…

Java反序列化漏洞与URLDNS利用链分析

前言 前面学习过 Java 反序列化漏洞的部分知识&#xff0c;总结过几篇文章&#xff1a; 文章发布日期内容概括《渗透测试-JBoss 5.x/6.x反序列化漏洞》2020-07-08JBoss 反序列化漏洞 CVE-2017-12149 的简单复现&#xff0c;使用了 ysoserial 和 CC5 链&#xff0c;未分析漏洞…

mipi-csi笔记

数据格式 长包&#xff0c;短包 用DI来判断数据类型 测试帧率&#xff0c;如用1G的示波器 下面的代表这是一张图片,用帧间隙来测试YUV422视频的帧率 fps10hz的外同步

alist配合onlyoffice 实现在线预览

alist配合onlyoffice 实现在线预览 文章目录 alist配合onlyoffice 实现在线预览一、安装onlyoffice二、增加view.html文件三、安装nginx&#xff0c;并增加conf配置文件四、alist预览配置增加 一、安装onlyoffice 我是采用docker安装&#xff0c;采用的版本是7.2&#xff0c; …

eNSP学习——连接RIP与OSPF网络、默认路由

目录 相关主要命令 实验一、连接RIP与OSPF网络 原理概述 实验目的 实验内容 实验拓扑 实验编址 实验步骤 1、基本配置 2、搭建RIP和OSPF网络 3、配置双向路由引入 4、手工配置引入时的开销值 实验二、使用OSPF、RIP发布默认路由 原理介绍 实验目的 实验内容 实…

天气数据集-Jena Climate dataset

天气数据集-Jena Climate dataset 1.数据集基本信息 Dataset Name: mpi_saale_2021b.csv Size: 26495 rows; 1 year (2021), 10 min 气象学、农业、环境科学 开源机构: Max Planck Institute for Biogeochemistry 2.数据特征 2.1 特征简介 数据共有31个特征&#xff0c;…

【GeoServer系列】——安装与发布shapefile数据

GeoServer是一个基于java的服务器&#xff0c;它允许用户查看和编辑地理空间数据。使用OGC制定的开放标准&#xff0c;GeoServer在地图创建和数据共享方面具有极大的灵活性。 功能概述&#xff1a; Open and Share Your Spatial Data GeoServer允许您向世界显示您的空间信息。G…

上可生产力,下可打游戏!奥睿科USB4炫影固态硬盘盒是真的稳

上可生产力&#xff0c;下可打游戏&#xff01;奥睿科USB4炫影固态硬盘盒是真的稳 哈喽小伙伴好&#xff0c;我是Stark-C~ 开篇 对于和我一样经常需要和存储数据打交道的人群来说&#xff0c;大容量的移动硬盘可以说是不可或缺的。移动硬盘作为一种便携式的存储设备&#xf…