60 关于 SegmentFault 的一些场景 (1)

前言

呵呵 此问题主要是来自于 帖子 月经结贴 -- 《Segmentation Fault in Linux》

这里主要也是 结合了作者的相关 case, 来做的一些 调试分享 

当然 很多的情况还是 蛮有意思 

 

本文主要问题如下 

1. 访问可执行文件中的 只读数据
2. 访问不存在的虚拟地址
3. 访问内核地址
4. 访问空指针
5. 访问异常堆地址1
6. 访问异常堆地址2
7. 访问异常堆地址3

 

 

1. 访问可执行文件中的 只读数据

比如如下数据, “Hello World” 会被放到 .text 段, 该段只读, 这里程序中试图更新该内存的数据 

#include <stdio.h>
#include <stdlib.h>

int main() {

    char* s = "Hello World";

    s[1] = 'x';

}

 

调试上下文如下 

page fault 的时候 ip 为 4195562 = 0x4004EA

error_code 为 7, PF_PROT | PF_WRITE | PF_USER

40dbcff97a0f44afa8f0bd3f6d18dba0.png

 

0x4004EA 对应的信息如下, 是一段执行代码 

07a7943c31f747159db10eed73f75a78.png

 

对应于 main 中的 如下代码, 映射到业务源代码就是 “s[1] = 'x';”

c7e70030529041989f609294980eee75.png

 

校验的时候 期望写操作, 但是实际 不支持写操作 

d032a0c5c1ed42e69c18b0f2840890a9.png

 

接下来就是 输出内核日志信息, 以及向目标进程发送 SIGSEGV 信号  1e23f599874c40c9afbc89f4881336c8.png

 

输出内核日志信息如下

日志中输出了 进程名称, 进程编号, 访问的地址, 指令寄存器, 栈顶寄存器, 错误编码 等等信息

3f493281ead14310b536c4f7ca1f382c.png

 

出现问题的异常代码为 0x4004ea, 栈顶寄存器的值为 0x7ffdc7c9b1f0

错误编码为 7 表示 PF_PROT | PF_WRITE | PF_USER

(initramfs) ./Test16SigSegvAccessConstants

[  207.776273] Test16SigSegvAc[258]: segfault at 400585 ip 00000000004004ea sp 00007ffdc7c9b1f0 error 7 in Test16SigSegvAccessConstants[400000+1000]

 

0x400585 为 .rodata 中 

d8b772dc60aa4ba494510dbc0a431816.png

 

0x4004ea 为 main 中执行出现异常的代码段 

f0d040600ba04069b94d20ed14c9c827.png

 

 

2. 访问不存在的虚拟地址  

#include <stdio.h>
#include <stdlib.h>

int main() {

    int *p = (int *) 0x7ffff7a8e58f;

    *p = 10;

}

 

这个是根据 address 查询虚拟地址, 查询不到

直接走的 bad_area, 输出日志信息, 发送 SIGSEGV 给目标进程 

f36e05480c2f460aac5dbda97010e9de.png

 

报错日志信息为 

(initramfs) ./Test16SigSegvAccessUnknownAddr

[ 7575.969176] Test16SigSegvAc[262]: segfault at 7ffff7a8e58f ip 00000000004004ec sp 00007fffd34e74d0 error 6 in Test16SigSegvAccessUnknownAddr [400000+1000]

 

出现问题的进程为 262号进程, 异常访问的地址为 0x 7ffff7a8e58f

出现问题的异常代码为 0x4004ec, 栈顶寄存器的值为 0x 7fffd34e74d0

错误编码为 6 表示 PF_WRITE | PF_USER

 

0x7ffff7a8e58f 为 main 中定义的需要访问的异常地址 

 

0x4004ec 为 main 中执行出现异常的代码段 

f053ec239aba4f6d904db8e3c0e72d17.png

 

 

3. 访问内核地址

#include <stdio.h>
#include <stdlib.h>

int main() {

    int *p = (int *) 0xffff88007fb89a80;

    *p = 10;

}

 

如果是访问内核空间的地址

如果是普通用户程序访问, 直接发送 SIGSEGV 信号量 

91b8ed9a19e5415b970a81ff5a744042.png

 

报错日志信息为 

(initramfs) ./Test16SigSegvAccessKernelAddr

[ 1014.007466] Test16SigSegvAc[259]: segfault at ffff88007fb89a80 ip 00000000004004ec sp 00007fffc027d130 error 7 in Test16SigSegvAccessKernelAddr[400000+1000]

 

出现问题的进程为 259号进程, 异常访问的地址为 0x ffff88007fb89a80

出现问题的异常代码为 0x4004ec, 栈顶寄存器的值为 0x 7fffc027d130

错误编码为 7 表示 PF_PROT | PF_WRITE | PF_USER

 

0x ffff88007fb89a80 为 main 中定义的需要访问的异常地址 

 

0x4004ec 为 main 中执行出现异常的代码段 

6d525d21e10944b8a1acf3bab804cdb8.png

 

 

4. 访问空指针

#include <stdio.h>
#include <stdlib.h>

int main() {

    int *p = NULL;

    *p = 10;

}

 

这个是根据 address 查询虚拟地址, 查询不到

直接走的 bad_area, 输出日志信息, 发送 SIGSEGV 给目标进程 

d3cee4862dc448fa908a580c86f9cb7f.png

 

 

报错日志信息为 

(initramfs) ./Test16SigSegvAccessNpe

[ 9696.656307] Test16SigSegvAc[264]: segfault at 0 ip 00000000004004e6 sp 00007fffd2d459c0 error 6 in Test16SigSegvAccessNpe[400000+1000]

 

出现问题的进程为 264号进程, 异常访问的地址为 0x 0

出现问题的异常代码为 0x4004e6, 栈顶寄存器的值为 0x 7fffd2d459c0

错误编码为 6 表示 PF_WRITE | PF_USER

 

0x0 为 main 中定义的需要访问的异常地址 

 

0x4004e6 为 main 中执行出现异常的代码段 

39ceb0c272dd4146ae020ba38d09b442.png

 

 

5. 访问异常堆地址1

这里调整了一下 原文档中的测试用例, 源文档中作者的理解应该是存在问题 

所以 当我看到 overflow 15k 的时候很奇怪, 源文档中每次增量是 0k, 1k, 2k, 3k, …, 15k

但是 按照原作者的期望应该每次 增量是 1k, 这里我们稍微 调整了一下 测试用例

然后 原作者文档中提到当初次分配16M的时候, SISSEGV 延迟到了 180k, 这个 按道理来说作者的理解应该也是存在问题, 初次分配 16M的时候 malloc 分配的虚拟地址是在 mmap 映射区 这两种情况 得分开讨论

#include <stdio.h>
#include <stdlib.h>

#define K 1024
int main () {
        char* c;
        int i = 0;

        c = malloc (1);
        while (1) {
        char* off = c + i*K;
        *off = 'a';
        printf ("overflow %dK\n", i);
                i ++;
        }
}

 

按照我们对于 malloc 的理解, 程序开始的时候 malloc 分配的 chunk 会在 132kb 左右 

这里 malloc(1) 会暂用 32byte, printf 会占用 1kb 左右 

然后 第一个循环中 操作的是 c 所在的内存空间, 第二个循环 操作的是 printf 的缓冲区 

到后面 132kb 末尾, 每 4kb 会有一个缺页中断, 操作的是对应的偏移的空间 

超过 132kb 之后, 会因为找不到 vma, 而发生 SIGSEGV

 

 

6. 访问异常堆地址2

#include <stdio.h>
#include <stdlib.h>

#define K 1024
int main () {
        int* a;

        a = malloc (sizeof(int));
        *a = 100;
        printf ("0x%x\n", a);
        printf ("%d\n", *a);
        free (a);
        printf ("%d\n", *a);
}

 

这个测试用例不会报错很正常 

因为 malloc, free 维护的空间, 不管 free 之前还是在之后, 其申请的虚拟地址空间 都属于当前进程

malloc(sizeof(int)) 会申请 132kb 的空间 

然后 a 对应的地址会为 0x602010, 然后 这块地址 可读可写

不会 出现 SIGSEGV 

这里 page_fault 产生的 address 为 0x602008 是因为是在 malloc 的过程中设置这块空间的头部信息, 这里会走正常的缺页中断 

fa7a0970a58a4400b984e0fd09caf33f.png

 

这里 走正常的缺页中断处理

第二次访问的时候, 地址合法, 并且 虚拟内存对应的物理内存已经加载 

ce234a8efadf488db1f7ba49f696c239.png

 

我们大致看一下这个过程中 glibc 的 free 的相关处理 

这里两次输出之所以 第二次值为 0, 是因为 free 的时候需要在 chunkptr 中维护空闲链表信息

这里是当前区域的 第一块空闲区域, 更新 p->forward 为 NULL, 值为 0

d2db6bc61d7246d8993521cf183200bd.png

 

调整一下代码, 我们从程序上面简单的验证一下 这里的 forward 的处理 

#include <stdio.h>
#include <stdlib.h>

#define K 1024
int main () {

        int* a = malloc (sizeof(int));
        int* b = malloc (sizeof(int));

        *a = 100;
        printf ("0x%x\n", a);
        printf ("%d\n", *a);
        free (a);
        printf ("%d\n", *a);

        *b = 100;
        printf ("0x%x\n", b);
        printf ("%d\n", *b);
        free (b);
        printf ("%d\n", *b);

}

 

b 对应的 chunkptr->fd[等价于b的数据空间] 为 6299648 为 0x602000, 记录的是前一块 空闲的chunkptr 的地址

a 对应的 chunkptr->fd[等价于a的数据空间] 为 0 为 NULL, 记录的是前一块空闲的 chunkptr 的地址

root@ubuntu:~/Desktop/linux/HelloWorld# ./Test16SigSegvAccessInvalidHeapAddr02
0x602010
100
0
0x602030
100
6299648

 

 

7. 访问异常堆地址3

这个主要是在 glibc 层面的限制, 处理 

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

void foo () {
        char c;

        memset (&c, 0x55, 128);
}

int main () {
        foo();
}

 

日志输出如下

8038f369d6894bb7bcc7ba647245a20a.png

 

在 glibc 层面处理如下, 输出了如上 日志信息, 然后向给定的进程 发送了 SIGABRT 信号  839bfcee47974c0cbfa7fbd120aa091c.png

 

内核这边 调试收到 SIG_ABRT 的信号的地方如下 

f6b42efa2b174b65b00c853921bd73ad.png

 

foo 编译结果如下 

b8ffa0c5636f4b92913f2d3ff9d45c00.png

 

 gdb 调试这个过程如下 

Reading symbols from Test16SigSegvAccessInvalidHeapAddr03...
(gdb) list
1
2       #include <stdio.h>
3       #include <stdlib.h>
4       #include <string.h>
5
6       void foo () {
7               char c;
8
9               memset (&c, 0x55, 128);
10      }
(gdb) b Test16SigSegvAccessInvalidHeapAddr03.c:9
Breakpoint 1 at 0x4005ad: file Test16SigSegvAccessInvalidHeapAddr03.c, line 9.
(gdb) run
Starting program: /root/linux/tmp/Test16SigSegvAccessInvalidHeapAddr03

Breakpoint 1, foo () at Test16SigSegvAccessInvalidHeapAddr03.c:9
9               memset (&c, 0x55, 128);
(gdb) disassemble
Dump of assembler code for function foo:
   0x0000000000400596 <+0>:     push   %rbp
   0x0000000000400597 <+1>:     mov    %rsp,%rbp
   0x000000000040059a <+4>:     sub    $0x10,%rsp
   0x000000000040059e <+8>:     mov    %fs:0x28,%rax
   0x00000000004005a7 <+17>:    mov    %rax,-0x8(%rbp)
   0x00000000004005ab <+21>:    xor    %eax,%eax
=> 0x00000000004005ad <+23>:    lea    -0x9(%rbp),%rax
   0x00000000004005b1 <+27>:    mov    $0x80,%edx
   0x00000000004005b6 <+32>:    mov    $0x55,%esi
   0x00000000004005bb <+37>:    mov    %rax,%rdi
   0x00000000004005be <+40>:    call   0x400470 <memset@plt>
   0x00000000004005c3 <+45>:    nop
   0x00000000004005c4 <+46>:    mov    -0x8(%rbp),%rax
   0x00000000004005c8 <+50>:    xor    %fs:0x28,%rax
   0x00000000004005d1 <+59>:    je     0x4005d8 <foo+66>
   0x00000000004005d3 <+61>:    call   0x400460 <__stack_chk_fail@plt>
   0x00000000004005d8 <+66>:    leave
   0x00000000004005d9 <+67>:    ret
End of assembler dump.
(gdb) stepi
0x00000000004005b1      9               memset (&c, 0x55, 128);
(gdb) stepi
0x00000000004005b6      9               memset (&c, 0x55, 128);
(gdb) stepi
0x00000000004005bb      9               memset (&c, 0x55, 128);
(gdb) stepi
0x00000000004005be      9               memset (&c, 0x55, 128);
(gdb) stepi
0x0000000000400470 in memset@plt ()
(gdb) step
Single stepping until exit from function memset@plt,
which has no line number information.
foo () at Test16SigSegvAccessInvalidHeapAddr03.c:10
10      }
(gdb) stepi
0x00000000004005c4      10      }
(gdb) stepi
0x00000000004005c8      10      }
(gdb) stepi
0x00000000004005d1      10      }
(gdb) stepi
0x00000000004005d3      10      }
(gdb) disassemble
Dump of assembler code for function foo:
   0x0000000000400596 <+0>:     push   %rbp
   0x0000000000400597 <+1>:     mov    %rsp,%rbp
   0x000000000040059a <+4>:     sub    $0x10,%rsp
   0x000000000040059e <+8>:     mov    %fs:0x28,%rax
   0x00000000004005a7 <+17>:    mov    %rax,-0x8(%rbp)
   0x00000000004005ab <+21>:    xor    %eax,%eax
   0x00000000004005ad <+23>:    lea    -0x9(%rbp),%rax
   0x00000000004005b1 <+27>:    mov    $0x80,%edx
   0x00000000004005b6 <+32>:    mov    $0x55,%esi
   0x00000000004005bb <+37>:    mov    %rax,%rdi
   0x00000000004005be <+40>:    call   0x400470 <memset@plt>
   0x00000000004005c3 <+45>:    nop
   0x00000000004005c4 <+46>:    mov    -0x8(%rbp),%rax
   0x00000000004005c8 <+50>:    xor    %fs:0x28,%rax
   0x00000000004005d1 <+59>:    je     0x4005d8 <foo+66>
=> 0x00000000004005d3 <+61>:    call   0x400460 <__stack_chk_fail@plt>
   0x00000000004005d8 <+66>:    leave
   0x00000000004005d9 <+67>:    ret
End of assembler dump.

 

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/672390.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【机器学习】基于OpenCV和TensorFlow的MobileNetV2模型的物种识别与个体相似度分析

在计算机视觉领域&#xff0c;物种识别和图像相似度比较是两个重要的研究方向。本文通过结合深度学习和图像处理技术&#xff0c;基于OpenCV和TensorFlow的MobileNetV2的预训练模型模&#xff0c;实现物种识别和个体相似度分析。本文详细介绍该实验过程并提供相关代码。 一、名…

Python代码:二十六、反转列表

1、题目 描述 小明有一个列表记录了各个朋友的喜欢的数字&#xff0c;num [3, 5, 9, 0, 1, 9, 0, 3]&#xff0c;请你帮他创建列表&#xff0c;然后使用reverse函数将列表反转输出。 输入描述&#xff1a; 无 输出描述&#xff1a; 第一行输出创建好的原始的列表&#x…

typescript --object对象类型

ts中的object const obj new Object()Object 这里的Object是Object类型&#xff0c;而不是JavaScript内置的Object构造函数。 这里的Object是一种类型&#xff0c;而Object()构造函数表示一个值。 Object()构造函数的ts代码 interface ObjectConstructor{readonly prototyp…

【JavaEE】JVM中垃圾回收机制详解

一.垃圾回收的基本概念 1.什么是垃圾回收机制. JVM&#xff08;Java虚拟机&#xff09;垃圾回收机制是Java内存管理的重要组成部分&#xff0c;它负责自动回收程序中不再使用的对象所占用的内存空间。这样可以有效地防止内存泄漏和内存溢出问题&#xff0c;提高程序的稳定性和…

电脑死机问题排查

情况描述&#xff1a;2024年6月2日下午16&#xff1a;04分电脑突然花屏死机&#xff0c;此情况之前遇到过三次&#xff0c;认为是腾讯会议录屏和系统自带录屏软件冲突导致。 报错信息&#xff1a;应用程序-特定 权限设置并未向在应用程序容器 不可用 SID (不可用)中运行的地址…

GPT-4o有点坑

GPT-4o有点坑 0. 前言1. GPT-4o简介2. GPT-4o带来的好处2.1 可以上传图片和文件2.2 更丰富的功能以及插件 3. "坑"的地方3.1 使用时间短3.2 GPT-4o变懒了 4. 总结 0. 前言 原本不想对GPT-4o的内容来进行评论的&#xff0c;但是看了相关的评论一直在说&#xff1a;技…

全国水系数据(更新到2024年5月)

上海市水系数据地图可视化 水系数据线图层&#xff08;小河/溪流、江/河、运河、下水道/排水管&#xff09; 水系数据面数据&#xff08;水域、水库、河岸、湿地&#xff09; 水系数据字段说明 可视化预览 北京市水系可视化 上海市水系可视化 广州市水系可视化 深圳市水系可视化…

Gin的快速入门和搭建

文章目录 Go的工程工程架构技术选型 Gin入门 Go的工程 基于Go生态&#xff0c;构建一个支持内容管理&#xff0c;内容加工、内容分发的内容库系统。 内容管理&#xff1a;增删改查内容加工&#xff1a;例如内容审核、推荐等内容分发&#xff1a;将内容可以推到不同的业务线 …

用例篇03

正交表 因素&#xff1a;存在的条件 水平&#xff1a;因素的取值 最简单的正交表&#xff1a;L4(2) 应用 allpairs 来实现正交表。 步骤&#xff1a; 1.根据需求找出因素和水平 2.将因素和水平写入到excel表格中&#xff08;表格不需要保存&#xff09;&#xff08;推荐用…

集成学习算法笔记

一、引言 在机器学习和数据分析领域&#xff0c;集成学习算法因其能够显著提高模型预测性能而备受关注。然而&#xff0c;任何算法在应用过程中都不可避免地会遇到一些挑战和问题&#xff0c;集成学习算法也不例外。其中&#xff0c;最为常见且关键的两大问题便是欠拟合&#…

软考高级系统规划与管理师适合什么人考?有什么优势?

系统规划与管理师适合什么人考&#xff1f; 适合以下几类人群&#xff1a; 1. 信息技术服务规划人员&#xff1a;从事信息技术服务规划工作&#xff0c;负责制定和优化IT服务规划的人 2. 信息系统运行维护管理人员&#xff1a;负责信息系统日常运行维护、确保系统稳定性和可…

【Pr剪辑】01新建项目起步

【Pr学习】01新建项目起步 1、新建项目2.序列设置2.1新建序列2.2序列参数讲解2.3自定义设置 3.PR窗口认识3.1 项目窗口3.2 源窗口2.4 保存面板 4.剪辑导入4.1 素材导入4.2 视图切换4.3 时间轴4.4轨道工具4.5 节目窗口素材导入 5.基础操作5.1 取消视频音频链接5.2 单独渲染&…

网络监听技术

网络监听技术 网络监听概述网络监听环境 流量劫持网络环境共享式网络监听原理交换式网络监听交换机的工作方式交换网络监听&#xff1a;交换机集线器交换网络监听&#xff1a;端口镜像交换网络监听&#xff1a;MAC洪泛交换网络监听&#xff1a;MAC洪泛交换网络监听&#xff1a;…

OpenMV学习笔记3——画图函数汇总

画图&#xff0c;即在摄像头对应位置画出图形&#xff0c;对于需要反馈信息的程序来说很直观。就如上一篇文章颜色识别当中的例子一样&#xff0c;我们在识别出的色块上画出矩形方框&#xff0c;并在中间标出十字&#xff0c;可以直观的看到OpenMV现在识别出的色块。 目录 一…

《论文阅读》通过顺序不敏感的表示正则化实现稳健的个性化对话生成 ACL 2023

《论文阅读》通过顺序不敏感的表示正则化实现稳健的个性化对话生成 ACL 2023 前言 相关个性化生成论文推荐简介问题定义方法损失函数实验结果 前言 亲身阅读感受分享&#xff0c;细节画图解释&#xff0c;再也不用担心看不懂论文啦~ 无抄袭&#xff0c;无复制&#xff0c;纯手…

Least-Squares Rigid Motion Using SVD——文献精读(使用 SVD 方法求解 ICP 问题)

一、文章信息与摘要 文章标题&#xff1a;Least-Squares Rigid Motion Using SVD&#xff08;使用奇异值分解的最小二乘刚性运动&#xff09; 说明本文的核心目标&#xff1a;计算对齐两组对应点的最佳拟合刚性变换的步骤 二、问题描述 假设P{p1,p2,...,pn}和Q{q1,q2,...,qn…

以sqlilabs靶场为例,讲解SQL注入攻击原理【25-31关】

【Less-25】 首先分析源码 发现把 SQL语句中的 or、and 替换成了空格&#xff0c;这就导致无法使用之前的sql注入方式。 解决方案&#xff1a;用 && 代替 and &#xff0c; 用 || 代替 or &#xff0c; 而且&在url中有特殊含义&#xff0c;如果直接使用会有问题&a…

电磁兼容(EMC):BUCK变换器基本原理及传导辐射分析设计

目录 1. BUCK电路拓扑及原理 2. Buck拓扑电路电磁场分析 3.总结 开关电源替代线性电源&#xff0c;解决了效率和体积问题&#xff0c;但也带来了新的EMI问题。开关电源也是产品内部的强辐射源之一&#xff0c;基于透过现象看本质&#xff0c;将复杂问题简单化&#xff0c;本…

2024年06月在线IDE流行度最新排名

点击查看最新在线IDE流行度最新排名&#xff08;每月更新&#xff09; 2024年06月在线IDE流行度最新排名 TOP 在线IDE排名是通过分析在线ide名称在谷歌上被搜索的频率而创建的 在线IDE被搜索的次数越多&#xff0c;人们就会认为它越受欢迎。原始数据来自谷歌Trends 如果您相…

JAVA流程控制--For循环

1.虽然所有循环都可以用while或do...while表示&#xff0c;但Java提供了另外一种语句——for循环&#xff0c;使一些循环结构变得简单 2.for循环语句是支持迭代的一种通用结构&#xff0c;是最有效&#xff0c;最灵活的循环&#xff0c;结构 3.for循环执行的次数是在…