一、系统介绍
车牌的检测和识别技术在现代社会中的应用场景可谓十分广泛,不仅涉及交通管理领域,还延伸至社区安保等多个方面。例如,在交通违章管理中,通过车牌追踪可以有效追踪违章车辆,维护交通秩序;在小区或地下车库的门禁系统中,车牌识别则能实现快速、准确的车辆进出管理。在车牌识别和检测的过程中,由于车牌具有独特的物理特性,如规整的矩形形状、固定的长宽比、特定的色调和纹理等,使得我们可以利用多种方法来进行有效的识别和检测。传统的基于形状的方法,通过识别车牌的矩形轮廓来定位车牌位置;基于色调的方法,则利用车牌特有的颜色和色调信息来区分车牌和其他物体;而基于纹理的方法,则是通过分析车牌表面的纹理特征来识别车牌。此外,有基于文字特征的方法,通过分析车牌上的字符特征来进行识别。
本文在车牌检测和识别的项目中,主要的流程可以分为以下几个步骤:
首先我们需要输入原始图片,并对其进行预处理。通过二值化操作,将图片转换为黑白二值图像,以简化后续的处理过程;接着利用边缘检测技术,提取出图片中的边缘信息,进一步确定车牌的轮廓;最后通过基于色调的颜色微调方法,对车牌的颜色进行微调,以提高车牌识别的准确性。
其次我们需要定位并裁剪出车牌区域。在预处理后的图像中,我们可以根据车牌的矩形形状和长宽比等特征,利用图像分割技术将车牌区域从背景中分离出来;然后通过裁剪操作,将车牌区域从原始图像中提取出来,为后续的识别工作做好准备。
接下来我们需要对裁剪出的车牌进行进一步的处理和识别。一种常用的方法是基于直方图的波峰波谷分割法。这种方法通过分析车牌图像的直方图特征,找到波峰和波谷的位置,从而将车牌字符从背景中分割出来;然后通过训练好的机器学习模型对分割出的字符进行识别。在这个项目中,我们训练了两个支持向量机(SVM)模型,一个用于识别省份简称(如“鲁”),另一个用于识别字母和数字。这些模型通过大量的训练数据学习车牌字符的特征表示,从而实现对车牌字符的准确识别。
最后为了方便用户使用和部署,我们利用PyQt5框架将整个算法封装成一个图形用户界面(GUI)程序。通过GUI程序,用户可以方便地输入原始图片、查看识别和检测结果、以及进行其他相关操作。此外我们还对整个程序进行了打包和发布,使其可以作为一个独立的安装软件供用户使用。
二、系统界面
三、部分代码:
def Cardseg(rois,colors,save_path):
'''
把一个roi列表和color列表,对应的每个车牌分割成一个一个的字
然后做预测分类
当然也可以考虑OCR的办法,这里使用的是传统的分类问题解决的!!!!
'''
seg_dic = {}
old_seg_dic = {}
for i, color in enumerate(colors):
if color in ("blue", "yello", "green"):
card_img = rois[i]
gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
if color == "green" or color == "yello":
gray_img = cv2.bitwise_not(gray_img)
ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
#查找水平直方图波峰
x_histogram = np.sum(gray_img, axis=1)
x_min = np.min(x_histogram)
x_average = np.sum(x_histogram)/x_histogram.shape[0]
x_threshold = (x_min + x_average)/2
wave_peaks = find_waves(x_threshold, x_histogram)
if len(wave_peaks) == 0:
# print("peak less 0:")
continue
#认为水平方向,最大的波峰为车牌区域
wave = max(wave_peaks, key=lambda x:x[1]-x[0])
gray_img = gray_img[wave[0]:wave[1]]
#查找垂直直方图波峰
row_num, col_num= gray_img.shape[:2]
#去掉车牌上下边缘1个像素,避免白边影响阈值判断
gray_img = gray_img[1:row_num-1]
y_histogram = np.sum(gray_img, axis=0)
y_min = np.min(y_histogram)
y_average = np.sum(y_histogram)/y_histogram.shape[0]
y_threshold = (y_min + y_average)/5 #U和0要求阈值偏小,否则U和0会被分成两半
wave_peaks = find_waves(y_threshold, y_histogram)
#for wave in wave_peaks:
# cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2)
#车牌字符数应大于6
if len(wave_peaks) <= 6:
# print("peak less 1:", len(wave_peaks))
continue
wave = max(wave_peaks, key=lambda x:x[1]-x[0])
max_wave_dis = wave[1] - wave[0]
#判断是否是左侧车牌边缘
if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
wave_peaks.pop(0)
#组合分离汉字
cur_dis = 0
for i,wave in enumerate(wave_peaks):
if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
break
else:
cur_dis += wave[1] - wave[0]
if i > 0:
wave = (wave_peaks[0][0], wave_peaks[i][1])
wave_peaks = wave_peaks[i+1:]
wave_peaks.insert(0, wave)
#去除车牌上的分隔点
point = wave_peaks[2]
if point[1] - point[0] < max_wave_dis/3:
point_img = gray_img[:,point[0]:point[1]]
if np.mean(point_img) < 255/5:
wave_peaks.pop(2)
if len(wave_peaks) <= 6:
# print("peak less 2:", len(wave_peaks))
continue
part_cards = seperate_card(gray_img, wave_peaks)
def accurate_place(card_img_hsv, limit1, limit2, color,cfg):
row_num, col_num = card_img_hsv.shape[:2]
xl = col_num
xr = 0
yh = 0
yl = row_num
#col_num_limit = cfg["col_num_limit"]
row_num_limit = cfg["row_num_limit"]
col_num_limit = col_num * 0.8 if color != "green" else col_num * 0.5 # 绿色有渐变
for i in range(row_num):
count = 0
for j in range(col_num):
H = card_img_hsv.item(i, j, 0)
S = card_img_hsv.item(i, j, 1)
V = card_img_hsv.item(i, j, 2)
if limit1 < H <= limit2 and 34 < S and 46 < V:
count += 1
if count > col_num_limit:
if yl > i:
yl = i
if yh < i:
yh = i
for j in range(col_num):
count = 0
for i in range(row_num):
H = card_img_hsv.item(i, j, 0)
S = card_img_hsv.item(i, j, 1)
V = card_img_hsv.item(i, j, 2)
if limit1 < H <= limit2 and 34 < S and 46 < V:
count += 1
if count > row_num - row_num_limit:
if xl > j:
xl = j
if xr < j:
xr = j
return xl, xr, yh, yl