颠仆流离学二叉树2 (Java篇)

本篇会加入个人的所谓鱼式疯言

❤️❤️❤️鱼式疯言:❤️❤️❤️此疯言非彼疯言

而是理解过并总结出来通俗易懂的大白话,

小编会尽可能的在每个概念后插入鱼式疯言,帮助大家理解的.

🤭🤭🤭可能说的不是那么严谨.但小编初心是能让更多人能接受我们这个概念 !!!

在这里插入图片描述

前言

在上篇中我们学习了 二叉树的基本概念 以及他们的特性结论,并运用到了 具体的题目 中去解决问题 。

而在本篇中,小编讲继续学习 二叉树 的基本操作, 主要围绕着我们 遍历二叉树 来讲解 , 人狠话不多,下面让我们切入主题吧 💥 💥 💥

目录

  1. 二叉树的遍历初识

  2. 前序遍历

  3. 中序遍历

4.后序遍历

  1. 层序遍历

  2. 二叉树遍历的应用

一. 二叉树的遍历初识

学习二叉树的结构,最简单的方式就是遍历,所谓遍历 是指 沿着某条搜索路线,依次树中的某个节点均做一次访问, 访问节点所做的操作 依赖于要解决的各种实际问题。

遍历是二叉树是最重要的操作之一,是 二叉树上进行其他运算 的基础

1. 二叉树的遍历简介

在这里插入图片描述

在遍历二叉树时, 如果没有进行某种约定,每个人都按照自己的方式来遍历, 得到的结果就比较乱, 如果我们按照某个规则 来遍历, 则每个人对于遍历结果都是相同的 , 如果 N 代表 根节点,L 代表左节点, R 代表 右节点, 那根据遍历的的节点有以下的遍历方式。

  • NLR: 前序遍历 (先序遍历) 根据 根——》 左 ——》 右 的顺序对二叉树进行遍历

  • LNR : ==中序遍历 ==: 根据 左——》 根——》 右 的顺序 对二叉树进行遍历

  • LRN 后序遍历 : 根据 左——》 右 ——》 根 的顺序对二叉树进行遍历

详细的遍历方式, 小编下面细讲哦 💖 💖 💖 💖

在遍历二叉树之前, 我们先用一下代码简单的 构建一颗二叉树



public class MyBinaryTree {
    public static class TreeNode {
        public TreeNode left;

        public TreeNode right;

        public  char val;


        public TreeNode(char val) {
            this.val = val;
        }
    }

    private TreeNode  root;

    // 构造二叉树
    public TreeNode createBinaryTree() {
        root=new TreeNode('A');
        TreeNode B=new TreeNode('B');
        TreeNode D=new TreeNode('D');
        TreeNode E=new TreeNode('E');
        TreeNode H=new TreeNode('H');
        TreeNode C=new TreeNode('C');
        TreeNode F=new TreeNode('F');
        TreeNode G=new TreeNode('G');
        root.left=B;
        B.left=D;
        B.right=E;
        E.right=H;
        root.right=C;
        C.left=F;
        C.right=G;

        return root;
    }


// 前序遍历
void preOrder(Node root);
// 中序遍历
void inOrder(Node root);
// 后序遍历
void postOrder(Node root);


}

二. 前序遍历

1. 前序遍历的特点

在这里插入图片描述

按照从左子树开始走,一直 往下递归,每一步所走的路径成为我们的根,先遍历完根之后。

按照根左右的顺序, 当我们走完每个根节点的左子树 时, 先往下, 再往回归 , 左节点成为新的根, 会到最初的根节点之后,再向右子树进行 先递后归 的操作,

动画演示

请添加图片描述

2. 前序遍历的实现

因为前序遍历有 递归 和 非递归 的两种方式, 但 遍历的原理和方向都是一致的

在本篇文章中,。小编都会带着小伙伴们 一 一 实现 💥 💥 💥 💥

在这里插入图片描述

<1>. 前序遍历的递归实现

   // 前序遍历
    public void FirstDisplay(TreeNode root) {
        if (root==null) {
            return;
        }

        System.out.print(root.val+" ");
        FirstDisplay(root.left);
        FirstDisplay(root.right);
    }

在这里插入图片描述

这里的代码的递归思路就是完美的按照我们遍历方向来的, 先访问,后递归

<2>. 前序遍历的非递归实现


  // 非递归的前序遍历

    public  void  FirstDisplayNo(TreeNode root) {

        // 先创建一个栈来存放树的每个节点
        Stack<TreeNode> stack=new Stack<>();

        // 先把艮节点创建一遍
        TreeNode cur=root;

        /**
         * 外循环主要遍历 右边的节点
         * 用于出栈的数据
         * 并让节点向右移动
         */

        while (cur != null || !stack.empty()) {

            /**
             * 在这个内循环中
             * 当往左走就添加数据,一直到为 null 结束
             *  并进行打印
             */
            while (cur != null) {
                // 先打印
                System.out.print(cur.val+" ");

                // 打印完就入栈
                stack.add(cur);

                // 节点向左移动
                cur=cur.left;
            }

            // 出栈存放数据
            cur=stack.pop();

            // 并向右走
            cur=cur.right;

            // 当再次循环时,如果左边还有节点就会继续存放
        }


        System.out.println();

    }
    

在这里插入图片描述

非递归的 实现步骤

  1. 先定义一个栈 , 来记录我们每次遍历过的 根节点
  1. 先让根节点一直 向左走 ,当遍历完我们的 左子树 (也就是我们的 root = null 时候), 并且入栈, 记录下来以便后面我们遍历 右子树
  1. 然后出栈, 开始 向右走 , 遍历我们的 右子树
  1. 当整个栈为 null 并且到达的这个节点 cur 也为 null , 就意味着遍历完整个 二叉树所有的节点

鱼式疯言

无论是 递归还是非递归前序遍历 , 我们的 前序遍历思路就是

先走根根走完走左左走完回到根再走右一层一层的走一步一步的回

细节处理

在代码上我们要注意的就是这个当节点为 null ,也就意味着我们要开始 回退上一个节点

二. 中序遍历

在这里插入图片描述

1. 中序遍历的特点

我们知道 中序遍历 , 是以 左- 根-右的顺序 进行遍历

我们先从 走左边, 还是让每个左节点先成为新的根, 当这个新的根的 左子树 都走完之后, 才能真正访问我们当前 新的节点

以此类推,我们新的节点访问结束后,就会进行回退到前一个旧的节点,继续访问,最终当整个 左子树走完 , 并且 访问完我们的根 , 就遍历我们的右子树 ,最终回到我们整颗树的 根节点

动画演示

请添加图片描述

2.中序遍历的实现

在这里插入图片描述

<1>.中序遍历的递归实现

// 中序遍历
public void middleDisplay(TreeNode root) {
    if (root==null) {
        return;
    }
    middleDisplay(root.left);
    System.out.print(root.val+" ");
    middleDisplay(root.right);
}

在这里插入图片描述

这里的代码的递归思路就是完美的按照我们遍历方向来的, 先递归,后访问 ,小编在这里就 不赘述

<2>. 中序遍历的非递归实现


 // 非递归的中序遍历
    public  void  middleDisplayNo (TreeNode root) {

        // 创建一个栈用于回退节点
        Stack<TreeNode> stack=new Stack<>();

        // 先放根节点
        TreeNode cur=root;

        /**
         * 外循环主要用于遍历 右边
         * 更是用于出栈的回退
         */

        while (cur != null || !stack.empty()) {

            /**
             * 内循环先遍历下去
             * 边遍历边存放
             */

            while (cur != null) {

                stack.add(cur);
                cur=cur.left;
            }

            // 出栈最后一个无左节点的左子树
            cur=stack.pop();
            // 打印该节点
            System.out.print(cur.val+" ");

            // 再往右走
            cur=cur.right;
        }
        System.out.println();
    }

在这里插入图片描述

非递归的实现步骤

我们先定义一个 ,用来存储走过的每个 左子树的节点

  1. 往左边 的节点走,先整个左子树 的每个节点都入栈, 当 这个节点 为 null停止入栈

  2. 然后进行出栈, 出栈的时候,我们就可以对该节点进行打印(访问) , 并且向 右子树节点 开始走

  3. 当整个栈为 null 并且 该节点也为 null , 也就意味着遍历完二叉树 所有的节点

鱼式疯言

中序遍历的最核心的要点就是

无论是 递归 还是 非递归中序遍历

一定要先走完每个左子树, 当我们进行 回退 的时候。 才轮的到该 根节点去遍历, 最后才走 右子树的一种 顺序.

三. 后序遍历

1. 后序遍历的特点

在这里插入图片描述

后序遍历的顺序就是 : 左-右-根 的顺序,

还是先走左边的节点,让 左边的节点 成为 新的根 , 直到找到走完整个 左子树 ,回退后继续走 右子树,当 右子树走完之后,回去的根节点就是我们要 访问

动画演示

请添加图片描述

2. 后序遍历的实现

在这里插入图片描述

<1>. 后序遍历的递归实现

   // 后序遍历
    public void lastDisplay(TreeNode root) {
        if (root==null) {
            return;
        }

        lastDisplay(root.left);
        lastDisplay(root.right);
        System.out.print(root.val+" ");

    }

在这里插入图片描述

这里的代码的递归思路就是完美的按照我们遍历方向来的, 先递归,后访问 ,小编在这里就 不赘述

<2>. 后序遍历的非递归实现

 // 非递归的后序遍历
    public  void  lastDisplayNo (TreeNode root) {
        Stack<TreeNode> stack=new Stack<>();
        TreeNode cur=root;
        TreeNode flg=null;
        while (cur != null || !stack.empty()) {
            while (cur != null) {

                stack.add(cur);
                cur=cur.left;
            }
            TreeNode top=stack.peek();
            if (top.right == null || flg==top.right) {
                System.out.print(top.val+" ");
                flg=top;
                stack.pop();
            } else {
                cur=top.right;
            }
        }
        System.out.println();
    }

在这里插入图片描述

非递归的实现思路

我们先定义一个栈,用来存放节点, 而这里存放的节点有可能是 左子树的节点,也有可能是 右子树的节点

  1. 先向左走,让左子树的节点先入栈
  1. 然后 查看栈顶元素,如果栈顶元素的右节点 null , 我们就 打印(访问) 该节点,
  1. 如果栈顶元素的 右节点 不为 null , 我们就 让 该节点 向右走 , 并且入栈
  1. 以此循环往复,当 栈为 null 并且 节点 cur 也为 null , 说明我们已经遍历完这个 二叉树所有的节点

鱼式疯言

无论是 非递归还是递归实现 对二叉树的 后序遍历

  • 小伙伴们只需要记住一点: 后序遍历 一定是 两边先走完 ,最后回到我们的根节点才 访问

  • 小伙伴们一定要把每个节点都看出一颗独立的树每个节点 都是一个 独立的根节点 来理解我们的 三大遍历

TreeNode flg =null


      if (top.right == null || flg==top.right) {
                System.out.print(top.val+" ");
                flg=top;
                stack.pop();
            } 

细节处理: 我们需要用一个 flg 来记录上一个已经 访问过 的节点,判断 是否访问过, 防止再次让 top 向右走,继续入栈, 否则会进入 死循环

四. 层序遍历

谈及完前面的 三大遍历, 这些是我们 操作二叉树的根本 ,但还有还要介绍一种 比较特殊的遍历

在这里插入图片描述

1. 层序遍历的特点

二叉树 层序遍历 的方向是从 根节点,按照 从上而下,从左到右 的顺序进行遍历 二叉树的每一个节点

动画演示

请添加图片描述

2. 层序遍历的实现

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */

class Solution {

    List<List<Integer>> S=new ArrayList<List<Integer>>();

    public List<List<Integer>> levelOrder(TreeNode root) {
          if(root==null) {
            return S;
          }

        creatOrder(root,0);
       return S;

    }

    public void creatOrder(TreeNode root,int i) {
        
        if(root==null) {
            return ;
        }

        if(S.size()==i) {
            S.add(new ArrayList<Integer>());
        }

        S.get(i).add(root.val);

        creatOrder(root.left,i+1);
        creatOrder(root.right,i+1);


    
    }
}

在这里插入图片描述

具体实现步骤:

  1. 我们用一个 二维数组(二维顺序表) 来存储每一个节点,二叉树 每一层代表是二维数组的 每一行, 在这二叉树每一层的行中,从左往右的节点 代表二维数组的 每一列

  2. 当二叉树从 左子树 开始递归, 意味着先存储 每一行二叉树的节点

  3. 当二叉树向 右子树 开始递归, 意味着存储 每一列二叉树的节点

  4. 最终当整个二叉树完全递归就意味着 全部的节点都存储在 这个二维数组 (二维顺序表) 中

鱼式疯言

  if(S.size()==i) {
            S.add(new ArrayList<Integer>());
        }

细节处理

每新添加 一行数据 ,需要 扩容 ,就是需要再 实例化一个顺序表 ,已有的行数就 不需要了

小伙伴们有没有发现,二叉树的层序遍历,本质上和我们的 完全二叉树的定义 是一样的,都是满足 自上而下,自左而右 的特点

六. 二叉树遍历的应用

学习完了 二叉树遍历,小伙伴们是时候 牛刀小试 一下了 💞 💞 💞

1. 习题一:

1.某完全二叉树按层次输出(同一层从左到右)的序列为 ABCDEFGH 。该完全二叉树的前序序列为()

A: ABDHECFG

B: ABCDEFGH

C: HDBEAFCG

D: HDEBFGCA

题目解析

我们知道了二叉树的 层序遍历 , 并且小伙伴们还有没有注意一个条件就是 完全二叉树

完全二叉树的特点就是 自上而下自左而右 节点不间断

那么我们不妨画个草图

在这里插入图片描述

画出草图,我们就很明显的知道了,答案选: A

2. 习题二:

2.二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG.则二叉树根结点为()

A: E

B: F

C: G

D: H

题目解析:

此题题目就是 答案, 我们知道前序遍历, 是从 根节点 开始的 , 所以 第一个访问出来的节点 就是我们的 根节点

故:答案选:A

3. 习题三:

3.设一课二叉树的中序遍历序列:badce,后序遍历序列:bdeca,则二叉树前序遍历序列为()

A: adbce

B: decab

C: debac

D: abcde

题目解析:

此题的精髓就在于,我们要根据 中序遍历 和 后序遍历画出草图, 根据草图得到我们的 前序遍历

在这里插入图片描述
画草图的方法:

方法: 先根据后序遍历寻找 根节点

对于 后序遍历 来说:根节点是从右往左 , 然后结合 中序遍历的特点 来确定 左右节点 的位置

故此题答案选: D

4. 习题四:

4.某二叉树的后序遍历序列与中序遍历序列相同,均为 ABCDEF ,则按层次输出(同一层从左到右)的序列为()

A: FEDCBA

B: CBAFED

C: DEFCBA

D: ABCDEF

题目解析 :

此题的精髓就在于,我们要根据 中序遍历 和 后序遍历画出草图, 根据草图得到我们的 层序遍历

在这里插入图片描述

依照上一题的方法,我们成功画出草图,最终得到我们的层序遍历

故答案选: A

鱼式疯言

独家秘方:

  1. 对于我们已知 前序和中序 遍历,我们的方法就是根据 前序遍历从左往右 找根节点,然后结合 中序遍历 画出草图
  1. 对于 我们已知的 后序和中序 遍历, 我们的方法是 根据 后序遍历 从右往左找根节点 , 然后结合中序遍历 画出草图

对于上述题目来说, 画图是 根本

总结

  • . 二叉树的遍历初识: 我们通过基本的概念知道了二叉树是通过一定 规则和方向 来遍历我们 每一个节点

  • . 前序遍历 : 本源是 根-左-右的方向遍历

  • . 中序遍历: 本源是 左-根-右的方向遍历

  • .后序遍历 : 本质上还是根据 左-右-根的方向遍历

  • . 层序遍历: 遵循一个 自上而下, 自左而右 的顺序遍历

  • . 二叉树遍历的应用 : 我们主打一个对于这四种遍历的性质的理解和应用,来画图解题

如果觉得小编写的还不错的咱可支持 三连 下 (定有回访哦) , 不妥当的咱请评论区 指正

希望我的文章能给各位宝子们带来哪怕一点点的收获就是 小编创作 的最大 动力 💖 💖 💖

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/670035.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用autodl服务器进行模型训练

1.注册并且选择一个服务器租用 2.点击jupyter lab进入服务器内部 3.把yolov5-master这个的压缩文件上传到jupyter的文件列表中 4.打开终端 (1)查看目录 ls (2)解压yolov5-master(1) unzip "yolov5-master (1).zip" 可以看到解压成功&#xff01; (3)进入yolov5-m…

网桥、路由器和网关有什么区别

在计算机网络领域&#xff0c;网桥、路由器和网关都是常见的网络设备&#xff0c;它们在网络通信中扮演着不同的角色。虽然它们都有连接不同网络的功能&#xff0c;但在实际应用中却具有各自独特的作用和特点。 1.网桥&#xff08;Bridge&#xff09; 定义&#xff1a;网桥是…

【云原生】Kubernetes----配置资源管理Secrets与ConfigMaps

目录 一、Secrets &#xff08;一&#xff09;Secrets概述 &#xff08;二&#xff09;Secrets类型 &#xff08;三&#xff09;Secrets使用方式 &#xff08;四&#xff09;创建Secrets 1.陈述式命令创建 1.1 定义用户与密码文件 1.2 使用陈述式命令创建 2.使用base6…

每日一题《leetcode--LCR 022.环形链表||》

https://leetcode.cn/problems/c32eOV/ 我们使用两个指针&#xff0c;fast 与 slow。它们起始都位于链表的头部。随后slow 指针每次向后移动一个位置&#xff0c;而fast 指针向后移动两个位置。如果链表中存在环&#xff0c;则fast 指针最终将再次与slow 指针在环中相遇。 stru…

飞腾D2000+FPGA云终端,实现从硬件、操作系统到应用的完全国产、自主、可控

飞腾云终端基于国产化飞腾高性能8核D2000处理器平台的国产自主可控解决方案&#xff0c;搭载昆仑国产化固件,支持UOS、银河麒麟等国产操作系统&#xff0c;满足国产化信息安全运算的需求&#xff0c;实现从硬件、操作系统到应用的完全国产、自主、可控&#xff0c;是国产信息安…

排序进阶----快速排序

当我们写了插入和希尔排序后&#xff0c;我们就应该搞更难的了吧。大家看名字就知道我们这篇博客的内容了吧。而且从名字上来看。快速排序就很快吧。那么为什么这个排序怎么能叫快速排序啊。我们希尔排序不是很快嘛。那么我们的快速排序肯定是有特殊之处嘞。不然这就太自负了。…

【简单讲解下Fine-tuning BERT,什么是Fine-tuning BERT?】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

paddleocr快速入门:基于python脚本及命令行两种方式实现图片OCR识别

本篇将再讲讲paddleocr在图像OCR识别方面的应用。 一、paddlecor参数说明 字段说明默认值use_gpu是否使用GPUTRUEgpu_mem初始化占用的GPU内存大小8000Mimage_dir通过命令行调用时执行预测的图片或文件夹路径page_num当输入类型为pdf文件时有效&#xff0c;指定预测前面page_nu…

R语言ggplot2包绘制世界地图

数据和代码获取&#xff1a;请查看主页个人信息&#xff01;&#xff01;&#xff01; 1. 数据读取与处理 首先&#xff0c;从CSV文件中读取数据&#xff0c;并计算各国每日收入的平均签证成本。 library(tidyverse) ​ df <- read_csv("df.csv") %>% group_…

MAC帧

基本问题 数据链路层的协议有很多&#xff0c;但是都有三个基本问题&#xff1a;封装成帧&#xff0c;透明传输和差错检测。 封装成帧 封装成帧&#xff08;Framing&#xff09;就是在一段数据的前后分别添加首部和尾部&#xff0c;这样就构成了一个帧。帧是数据链路层的传送…

css 中clip 属性和替代方案 clip-path属性使用

clip clip 属性概述 作用&#xff1a;clip 属性用于定义一个裁剪区域&#xff0c;该区域外的元素内容将不可见。适用元素&#xff1a;clip 属性只对绝对定位&#xff08;position: absolute&#xff09;或固定定位&#xff08;position: fixed&#xff09;的元素有效&#xf…

掘金AI 商战宝典-高阶班:如何用AI制作视频(11节视频课)

课程目录&#xff1a; 1-第一讲用AI自动做视频&#xff08;上&#xff09;_1.mp4 2-第二讲用AI自动做视频&#xff08;中&#xff09;_1.mp4 3-第四讲A1做视频实战&#xff1a;店铺宣传_1.mp4 4-第五讲Al做视频实战&#xff1a;商品带贷1.mp4 5-第六讲Al做视频实战&#x…

码随想录算法训练营第二十四天| 77. 组合

77. 组合 - 力扣&#xff08;LeetCode&#xff09; class Solution {ArrayList<Integer> path new ArrayList<>();ArrayList<List<Integer>> result new ArrayList<>();public List<List<Integer>> combine(int n, int k) {if(n &…

SAP揭秘者- SAP PP模块日常常见运维问题之工单入库失败原因分析及快速处理

文章摘要&#xff1a; 无论您是负责SAP实施项目还是负责SAP运维项目&#xff0c;当用户发现有SAP PP模块的各种异常问题的时都需要作为SAP PP顾问的您快速地理解用户提交的问题&#xff0c;并快速地解决这些问题&#xff0c; 上篇文章跟大家聊了基本单位维护错了怎么修改的解决…

qt按钮的autoRepeat属性和default属性

autoRepeat属性&#xff1a;按住按钮不松&#xff0c;表示一直在点击按钮 default属性&#xff1a;点击Enter键表示在点击按钮

02Docker中的镜像和容器命令

镜像和容器 Docker中有镜像和容器的概念 镜像(Image): Docker将应用程序及其运行所需要的依赖、函数库、环境、配置等文件打包在一起称为镜像即硬盘中的文件容器(Container): 镜像中的应用程序运行起来并加载到内存中后形成的进程就是容器,一个镜像可以运行多个容器将来形成集…

计算机毕业设计hadoop++hive微博舆情预测 微博舆情分析 微博推荐系统 微博预警系统 微博数据分析可视化大屏 微博情感分析 微博爬虫 知识图谱

摘 要 随着社交媒体的普及和互联网技术的快速发展&#xff0c;热点舆情事件频发&#xff0c;对于政府、企业和公众来说&#xff0c;及时了解和分析热点舆情&#xff0c;把握舆论走向&#xff0c;已经成为一项重要的任务。然而&#xff0c;传统的数据处理和分析方法在面对海量…

华为 2024 届实习校园招聘-硬件通⽤/单板开发——第五套

华为 2024 届实习校园招聘-硬件通⽤/单板开发——第五套 部分题目分享&#xff0c;完整版带答案(有答案和解析&#xff0c;答案非官方&#xff0c;未仔细校正&#xff0c;仅供参考&#xff09;&#xff08;共十套&#xff0c;每套四十题选择题&#xff09;获取&#xff08;WX:…

Java18新版本特性!

Java 18引入了多项新特性&#xff0c;主要包括默认UTF-8字符集、简单的Web服务器、栈步进API等。Java 18是Oracle在2022年发布的版本&#xff0c;其旨在通过一系列创新特性来提升开发效率与性能。下面将逐一探讨Java 18的主要新特性以及它们对开发者的具体影响&#xff1a; 默认…

【C语言】10.C语言指针(4)

文章目录 1.回调函数是什么&#xff1f;2.qsort 使⽤举例2.1 使⽤qsort函数排序整型数据2.2 使⽤qsort排序结构数据 3.qsort函数的模拟实现 1.回调函数是什么&#xff1f; 回调函数就是一个通过函数指针调用的函数。 如果你把函数的指针&#xff08;地址&#xff09;作为参数…