从功能性磁共振成像(fMRI)数据重建音频

      听觉是人类最重要的感官之一,它负责接收外部的听觉刺激,并将这些信息传递给大脑进行处理和理解。研究人员正致力于从神经科学和计算机科学两个领域探索人脑的听觉感知机制。一个关键目标是从人脑中解码神经信息,并重建原始的刺激。常见的大脑到音频的重建任务可以分为三类:大脑到声音的任务,用于重建环境中的所有自然声音;大脑到音乐的任务,用于音乐;以及大脑到语音的任务,用于人声,这些任务基于不同的刺激音频

     研究表明,在人耳的耳蜗和亚皮质结构中,声音被分解成类似频谱图的频率特定时间模式。进入大脑皮层后,人类听觉系统有两条从低级到高级的信息处理通路。初级听觉皮层对浅层或中级DNN特征更敏感,这些特征代表低级声学特征,而非初级听觉皮层对深层DNN特征更敏感,这些特征代表高级语义特征

    受到声学到语义流的启发,我们模拟了听觉处理路径的每个生理结构,并提出了一种相反的从粗到细的音频重建方法。我们使用非侵入性fMRI作为神经信号。首先,进行一个从粗到细的大脑解码过程。我们将fMRI数据解码到低维CLAP空间以获得粗粒度的语义特征,然后在这些语义特征的引导下,我们将fMRI数据解码到高维AudioMAE潜在空间以获得精细的声学特征。接下来,我们使用解码的精细神经特征作为条件,通过潜在扩散模型(LDM)重建mel频谱图,然后使用声码器恢复刺激波形。

1、方法

利用无创功能性磁共振成像(fMRI)数据,模拟听觉处理的逆路径,从而实现高质量的音频重建。

1.1 粗粒度语义解码

使用预训练的多模态模型 CLAP(对比语言-音频预训练),将 fMRI 数据解码到低维语义空间,提取粗粒度的语义特征。

CLAP 模型通过对比语言-音频预训练,将音频与自然语言描述对齐,从而提供丰富的语义信息。

1.2 细粒度声学解码

在语义特征的指导下,将 fMRI 数据进一步解码到 AudioMAE 模型的潜在空间,获取细粒度的声学特征。

AudioMAE 模型是一个自监督预训练模型,专注于重建掩码块,能够保留更多低层声学细节并更好地保留高层语义信息。

选择AudioMAE 模型的理由:

  • AudioMAE保留了更多的低级声学细节。
  • 与VAE相比,AudioMAE更好地保留了高级语义信息。
  • 在包含自然声音、人类和动物声音以及音乐的AudioSet上预训练,AudioMAE可以在通用音频领域中很好地工作。

1.3 音频重建

使用潜在扩散模型(LDM)作为生成模型,在细粒度声学特征的条件 下重建刺激音频的梅尔频谱图。

LDM 是一种强大的生成模型,能够在潜在空间中建模复杂的数据分布,并已被广泛应用于音频生成任务。

1.4 声码器

使用预训练的 HiFiGAN 声码器将重建的梅尔频谱图转换为波形,最终生成高质量的音频。

2、实验

2.1 实验设置

  • 粗粒度解码: 对于 Brain2Sound 和 Brain2Speech 数据集,仅使用听觉皮层(AC)区域的体素;对于 Brain2Music 数据集,使用整个大脑的体素。
  • 细粒度解码: 使用 4 层 Transformer 编码器和解码器,并使用预训练的 AudioMAE 模型初始化。
  • 音频重建: 使用预训练的 AudioLDM2 模型作为 LDM,并使用预训练的 HiFiGAN 声码器将梅尔频谱图转换为波形。

2.2 实验对比

  • 直接解码方法: 将 fMRI 信号直接解码到梅尔频谱图,包括线性回归、多层感知机、双向 LSTM 和 Transformer 编码器。
  • 细粒度解码方法: 将 fMRI 信号直接解码到 AudioMAE 模型的潜在空间,然后使用 LDM 重建音频。
  • 粗到细解码方法: 首先将 fMRI 信号解码到 CLAP 空间获取语义特征,然后在语义特征的指导下解码到 AudioMAE 潜在空间获取声学特征,最后使用 LDM 重建音频。

2.3 评估指标

2.3.1 高层次音频表示指标

  • FD (Fréchet Distance): 计算生成样本和目标样本在音频分类器 PANNs 提取的特征空间中的距离。
  • FAD (Fréchet Audio Distance): 类似于 FD,但使用 VGGish 模型提取特征。
  • KL (Kullback–Leibler divergence): 计算分类器 PANNs 的分类 logit 的 KL 散度,使用 Softmax 激活函数。
  • KL-S (Kullback–Leibler divergence): 计算分类器 PANNs 的分类 logit 的 KL 散度,使用 Sigmoid 激活函数。

2.3.2 低层次梅尔频谱图相似度指标

  • PCC (Pearson Correlation Coefficient): 计算重建音频和刺激音频梅尔频谱图的皮尔逊相关系数。
  • SSIM (Structural Similarity Index): 计算重建音频和刺激音频梅尔频谱图的结构相似性指数。

2.4 实验结果

  • 粗到细解码方法在重建音频的细节和语义方面均优于直接解码方法和细粒度解码方法。
  • 粗到细解码方法在 FD、FAD、KL 和 KL-S 等指标上取得了最先进的性能。
  • 提供语义提示可以有效提高重建音频的语义质量,尤其是在语义特征不佳的情况下。

2.5 数据集

Brain2Sound、Brain2Music和Brain2Speech一起被广泛用于验证粗到细的解码方法在单独的细粒度方法中的优越性。

  • Brain2Sound 数据集: 包含 5 个受试者聆听自然声音的 fMRI 信号,包括人声、动物、乐器和环境声音。
  • Brain2Music 数据集: 包含 5 个受试者聆听音乐片段的 fMRI 信号,包括 10 种音乐类型。
  • Brain2Speech 数据集: 包含 7 个受试者聆听语音片段的 fMRI 信号,包括不同性别的说话人。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/669628.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深入解析 YOLOv8 中的 `conv.py`(代码图文全解析-下)

😎 作者介绍:我是程序员行者孙,一个热爱分享技术的制能工人。计算机本硕,人工制能研究生。公众号:AI Sun,视频号:AI-行者Sun 🎈 本文专栏:本文收录于《yolov8》系列专栏&…

快速排序详讲(两种方法)

目录 原理 实现方式 正常实现 理由 先从右到左,在从左到右 先从左到右,先从右到左 挖坑法 效率 优化 测试 代码 原理 快速排序是将最左侧的数字当作关键数字,将关键数字放在对应位置,且关键数字左侧均大于它&#xff…

【深度学习】【STWave】时空图预测,车流量预测,Efficient Spectral Graph Attention Network

Spatio-Temporal meets Wavelet: Disentangled Traffic Flow Forecasting via Efficient Spectral Graph Attention Network 代码:https://github.com/LMissher/STWave 论文:https://arxiv.org/abs/2112.02740 帮助: https://docs.qq.com/s…

使用pycharm+opencv进行视频抽帧(可以用来扩充数据集)+ labelimg的使用(数据标准)

一.视频抽帧 1.新创建一个空Pycharm项目文件,命名为streach zhen 注:然后要做一个前期工作 创建opencv环境 (1)我们在这个pycharm项目的终端里面输入下面的命令: pip install opencv-python --user -i https://pypi.t…

【Kubernetes】Pod理论详解

一、Pod基础概念: Pod是kubernetes中最小的资源管理组件,Pod也是最小化运行容器化应用的资源对象。一个Pod代表着集群中运行的一个进程。kubernetes中其他大多数组件都是围绕着Pod来进行支撑和扩展Pod功能的,例如,用于管理Pod运行…

网页音频提取在线工具有哪些 网页音频提取在线工具下载

别再到处去借会员账号啦。教你一招,无视版权和地区限制,直接下载网页中的音频文件。没有复杂的操作步骤,也不用学习任何代码。只要是网页中播放的音频文件,都可以把它下载到本地保存。 一、网页音频提取在线工具有哪些 市面上的…

python的元组

元组与列表的区别 元组和列表非常相似。不同之处在于,外观上:列表是被 方括号 包裹起来的,而元组是被 圆括号 包裹起来的。本质上:列表里的元素可修改,元组里的元素是 不可以“增删改” 。 还有一个微妙的地方要注意…

网络研究观-20240601

新战争时代的商业风险 美国人已经将战争视为遥远战场上发生的事件。然而,网络空间打破了这种看法,让全球战争的真正影响来到了美国家门口。 攻击不再局限于遥远的战场,而是在最意想不到的时间和地点发动袭击。 谁将主宰第五次工业革命&…

智慧校园的机遇与挑战

随着5G、物联网、大数据等技能的日渐老练,数字化正在渗透到各行各业中,为事务立异和价值增加供给支撑。在教育职业,运用智能化体系赋能教育办理越来越受欢迎,教育信息化方针一再出台,进一步加快了智慧校园落地的脚步。…

Dijkstra求最短路篇一(全网最详细讲解两种方法,适合小白)(python,其他语言也适用)

前言: Dijkstra算法博客讲解分为两篇讲解,这两篇博客对所有有难点的问题都会讲解,小白也能很好理解。看完这两篇博客后保证收获满满。 本篇博客讲解朴素Dijkstra算法,第二篇博客讲解堆优化Dijkstra算法Dijkstra求最短路篇二(全网…

联合和枚举(自定义类型)

1.枚举(关键字:enum) 1.1枚举类型的声明 把可能的值一一列举 赋的值是可能取值 1.2枚举类型的优点 1)增加代码的可读性和可维护性 2)和#define定义的标识符比较枚举有类型检查,更加严谨 3)便于调试&a…

【C++】list的使用(下)

🔥个人主页: Forcible Bug Maker 🔥专栏: STL || C 目录 前言🔥操作list对象的接口函数(opeartions)spliceremoveremove_ifuniquemergesortreverse 结语 前言 本篇博客主要内容:STL…

智能合约引领:探索Web3的商业革新之路

随着区块链技术的迅速发展,智能合约作为其重要应用之一,正在逐步改变着商业世界的格局。Web3作为下一代互联网的代表,正引领着智能合约在商业领域的广泛应用和创新。本文将深入探讨智能合约在Web3中的作用,以及智能合约如何引领着…

「计网」网络初识

🎇个人主页:Ice_Sugar_7 🎇所属专栏:计网 🎇欢迎点赞收藏加关注哦! 网络初识 🍉IP 地址 & 端口号🍉网络协议🍌TCP/IP 网络协议 🍉封装和分用&#x1f349…

Xcode设置cocoapods库的最低兼容版本

目录 前言 1.使用cocoapods遇到的问题 2.解决办法 1.用法解释 1. config.build_settings: 2.IPHONEOS_DEPLOYMENT_TARGET 2.使用实例 3.注意事项 1.一致性 2.pod版本 前言 这篇文章主要是介绍如何设置cocoapods三方库如何设置最低兼容的版本。 1.使用cocoapods遇到的…

小红书图片视频下载利器,无水印!

在刷小红书时,总能看到一些博主发的好看的壁纸或者视频,想下载下来做头像或者设置为手机电脑的桌面。不过众所周知,直接保存的图片和视频都是有水印的,那如何去掉水印呢? 有些朋友肯定说,我知道有去水印的…

如何区分解析亚马逊网站产品搜索结果页HTM代码中广告位( Sponsored)和自然位的产品ASIN及排名

在开发亚马逊产品广告排名插件的时候需要通过页面HTML代码分别找出属于广告位和自然搜索结果的产品ASIN及排名,所以需要找到区分广告位和自然搜索结果的HTML代码属性: 所有搜索结果页的产品不管是广告位还是自然位,都包括在 标签里&#xff…

服务器数据恢复—服务器raid常见故障表现原因解决方案

RAID(磁盘阵列)是一种将多块物理硬盘整合成一个虚拟存储的技术,raid模块相当于一个存储管理的中间层,上层接收并执行操作系统及文件系统的数据读写指令,下层管理数据在各个物理硬盘上的存储及读写。相对于单独的物理硬…

kali中切换python版本

kali中切换python版本 在日常使用的过程中,可以通过一些工具来做打靶环境,或者工具的启动,都和python关联,而有时存在工具安装,或者运行的时候出现报错,这时候极大可能是因为我们本地的kali中python的版本不…

安装pytorch深度学习模型时要知道自己的电脑显卡是否支持CUDA

安装pytorch深度学习模型时要知道自己的电脑显卡是否支持CUDA,如何知道自己的显卡是否支持呢?可以去下面的网站,打开后就可以见到如下图所示: CUDA | 支持的GPU | GeForce (nvidia.cn)