相关说明
这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。
本文涉及到的代码链接如下:regression2chatgpt/ch06_optimizer/stochastic_gradient_descent.ipynb
本文将讨论利用PyTorch实现随机梯度下降法的细节。
关于大语言模型的内容,推荐参考这个专栏。
内容大纲
- 相关说明
- 一、随机梯度下降法:更优化的算法
- 二、算法细节
- 三、代码实现
- 四、粉丝福利
一、随机梯度下降法:更优化的算法
梯度下降法虽然在理论上很美好,但在实际应用中常常会碰到瓶颈。为了说明这个问题,令 L i L_i Li表示模型在 i i i点的损失,即 L i = ( y i − a x i − b ) 2 L_i = (y_i - ax_i - b)^2 Li=(yi−axi−b)2,对所有数据点的损失求和后,可以得到整体损失函数: L = 1 ⁄ n ∑ i L i L = 1⁄n ∑_iL_i L=1⁄n∑iLi 。即模型的损失函数实际上是各个数据点损失的平均值,这一观点适用于大多数模型 1。
计算整体损失函数 L L L的梯度可得, ∇ L = 1 ⁄ n ∑ i L i ∇L = 1⁄n \sum_i L_i ∇L=1⁄n∑iLi。也就是说,损失函数的梯度等于所有数据点处梯度的平均值。但是在实际应用中,通常会使用大型数据集计算所有数据点的梯度和,这需要相当长的时间。为了加速这个计算过程,可以考虑使用随机梯度下降法(Stochastic Gradient Descent,SGD)。
二、算法细节
随机梯度下降法的核心思想是:每次迭代时只随机选择小批量的数据点来计算梯度,然后用这个小批量数据点的梯度平均值来代替整体损失函数的梯度2。
为了使算法的细节更加准确,引入一个超参数,称为批量大小(Batch Size),记作m。每次随机选取m个数据,记为
I
1
,
I
2
,
⋯
,
I
m
I_1,I_2,⋯,I_m
I1,I2,⋯,Im。使用这些数据点的梯度平均值来近似代替整体损失函数的梯度:
∇
L
=
1
⁄
n
∑
i
∇
L
i
≈
1
⁄
m
∑
j
=
1
m
∇
L
I
j
∇L = 1⁄n ∑_i∇L_i ≈ 1⁄m ∑_{j = 1}^m∇L_{I_j }
∇L=1⁄n∑i∇Li≈1⁄m∑j=1m∇LIj 。由此得到新的参数迭代公式:
a
k
+
1
=
a
k
−
η
/
m
∑
j
=
1
m
∂
L
I
j
/
∂
a
b
k
+
1
=
b
k
−
η
/
m
∑
j
=
1
m
∂
L
I
j
/
∂
b
(1)
a_{k + 1} = a_k - η/m ∑_{j = 1}^m∂L_{I_j }/∂a \\ b_{k + 1} = b_k -η/m ∑_{j = 1}^m∂L_{I_j }/∂b \tag{1}
ak+1=ak−η/mj=1∑m∂LIj/∂abk+1=bk−η/mj=1∑m∂LIj/∂b(1)
在随机梯度下降法中,所有数据点都使用了一遍,称为模型训练了一轮。由此在实际应用中常使用另一个超参数——训练轮次(Epoch),表示所有数据将被用几遍,用于控制随机梯度下降法的循环次数。换句话说,就是公式(1)被迭代运算多少次。
在一些机器学习书籍和学术文献中,还对随机梯度下降法(当m=1时)和小批量梯度下降法(当m>1时)进行了进一步的区分。然而,这两种方法之间的区别并不大,其核心思想都是基于随机采样来近似计算梯度,从而高效地更新参数、优化模型。在实际应用中,会根据问题的性质和数据规模选择合适的批次大小,以获得最佳的训练效果。因此,本书将统一使用随机梯度下降法来代表这一类方法,以保持概念清晰和简洁。
与梯度下降法相比,随机梯度下降法更高效,这是因为小批量梯度计算比整体梯度计算快得多。尽管在随机梯度下降法中,采用小批量数据估计梯度可能会引入一些噪声,但实践证明这些噪声对整个优化过程有好处,有助于模型克服局部最优的“陷阱”,逐步逼近全局最优参数。
三、代码实现
随机梯度下降法的实现与梯度下降法类似,不同之处在于,每次计算梯度时需要“随机”选取一部分数据,具体的实现步骤可以参考程序清单1(完整代码)。
- 在程序清单1的第2行,引入一个名为batch_size的超参数,用于控制每个批次中的数据量大小。选择合适的batch_size对算法的运行效率和稳定性至关重要。如果参数设置过大,可能会导致算法运行效率下降;而过小的参数可能使算法变得过于随机,影响收敛的稳定性。选择合适的参数需要结合具体的模型和应用场景,结合相关领域的经验进行决策。
- 在程序清单1的第11—13行,展示了一种随机选取批次数据的实现方式。这也是随机梯度下降法与普通梯度下降法的主要区别之一。实现随机性的方式有很多种,比如引入随机数等。这里仅呈现一种经典方法:将数据按顺序划分成批次。
1 | # 定义每批次用到的数据量
2 | batch_size = 20
3 | # 定义模型
4 | model = Linear()
5 | # 确定最优化算法
6 | learning_rate = 0.1
7 | optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
8 |
9 | for t in range(20):
10 | # 选取当前批次的数据,用于训练模型
11 | ix = (t * batch_size) % len(x)
12 | xx = x[ix: ix + batch_size]
13 | yy = y[ix: ix + batch_size]
14 | yy_pred = model(xx)
15 | # 计算当前批次数据的损失
16 | loss = (yy - yy_pred).pow(2).mean()
17 | # 将上一次的梯度清零
18 | optimizer.zero_grad()
19 | # 计算损失函数的梯度
20 | loss.backward()
21 | # 迭代更新模型参数的估计值
22 | optimizer.step()
23 | # 注意!loss记录的是模型在当前批次数据上的损失,该数值的波动较大
24 | print(f'Step {t + 1}, Loss: {loss: .2f}; Result: {model.string()}')
在随机梯度下降法的执行过程中,通常使用模型的整体损失作为指标来监测算法的运行情况。但要注意的是,程序清单1中第16行定义的loss表示模型在小批量数据上的损失,这个值仅依赖于少量数据,迭代过程中会表现出极大的不稳定性,因此并不适合作为评估算法运行情况的主要标志。
如果希望更准确地监测算法的运行情况,需要在更大的数据集上估计模型的整体损失,例如在全部训练数据上计算损失,如图1所示。这种评估方式更稳定,能够更全面地反映模型的训练进展。
四、粉丝福利
参与方式:关注博主、点赞、收藏、评论区评论“解构大语言模型”(切记要点赞+收藏,否则抽奖无效,每个人最多评论三次!)
本次送书数量不少于3本,【阅读量越多,送得越多】
活动结束后,会私信中奖粉丝,请各位注意查看私信哦~
活动截止时间:2024-05-24 24:00:00
对于解决回归问题的模型,这个结论显然成立。对于解决分类问题的模型(比如逻辑回归模型),只需对模型的似然函数做简单的数学变换(先求对数,再求相反数),就可以得到同样的结论。 ↩︎
这在数学上是完全合理的。从统计的角度来看,用所有数据点求平均值,并不比随机抽样的方法高明很多。与线性回归参数估计值类似,两个结果都是随机变量:它们都以真实梯度为期望,只是前者的置信区间更小。 ↩︎