【贪心算法】leetcode刷题

贪心算法无固定套路。
核心思想:先找局部最优,再扩展到全局最优。

455.分发饼干

在这里插入图片描述
两种思路:
1、从大到小。局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。先遍历的胃口,在遍历的饼干
在这里插入图片描述

class Solution:
    def findContentChildren(self, g: List[int], s: List[int]) -> int:
        g = sorted(g,reverse=True)
        s = sorted(s,reverse=True)
        count = 0
        si = 0
        for gi in g:
            if si<len(s) and s[si]>=gi:   # 饼干要大于胃的容量,才能喂饱
                count+=1
                si+=1             
        return count

2、从小到大。小饼干先喂饱小胃口。两个循环的顺序改变了,先遍历的饼干,在遍历的胃口,这是因为遍历顺序变了,我们是从小到大遍历。

class Solution:
    def findContentChildren(self, g: List[int], s: List[int]) -> int:
        g = sorted(g)
        s = sorted(s)
        count = 0
        gi = 0
        for si in s:
            if gi<len(g) and g[gi]<=si:  # 胃的容量要小于等于饼干大小才能喂饱
                count+=1
                gi+=1    
                
        return count

376. 摆动序列

在这里插入图片描述
具体实例:
在这里插入图片描述
局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值。
**整体最优:**整个序列有最多的局部峰值,从而达到最长摆动序列。

考虑几种情况:

  • 情况一:上下坡中有平坡
  • 情况二:数组首尾两端
  • 情况三:单调坡中有平坡

情况一:上下坡中有平坡
在这里插入图片描述
它的摇摆序列长度是多少呢? 其实是长度是 3,也就是我们在删除的时候 要不删除左面的三个 2,要不就删除右边的三个 2。
在这里插入图片描述
在图中,当 i 指向第一个 2 的时候,prediff > 0 && curdiff = 0 ,当 i 指向最后一个 2 的时候 prediff = 0 && curdiff < 0。
如果我们采用,删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值。
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0),为什么这里允许 prediff == 0 ,就是为了 上面我说的这种情况。

情况二:数组首尾两端
例如序列[2,5],如果靠统计差值来计算峰值个数就需要考虑数组最左面和最右面的特殊情况。
因为我们在计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i])的时候,至少需要三个数字才能计算,而数组只有两个数字。
这里我们可以写死,就是 如果只有两个元素,且元素不同,那么结果为 2。
在这里插入图片描述

情况三:单调坡度有平坡
在这里插入图片描述

class Solution:
    def wiggleMaxLength(self, nums: List[int]) -> int:
        count = 1
        # 情况二,小于等于2的情况,可以写死
        if len(nums)<2:
            return len(nums)
        if len(nums)==2:
            if nums[-1]-nums[0]==0:
                return 1
            return len(nums)
        # 情况一以及情况三:
        prediff = 0
        for i in range(0,len(nums)-1):
            # if i>0:
            #     prediff = nums[i-1]-nums[i]
            curdiff = nums[i]-nums[i+1]
            if (prediff<=0 and curdiff>0) or (prediff>=0 and curdiff<0):
                count+=1
                prediff = curdiff   # 更新prediff
        return count  

122.买卖股票的最佳时机 II

在这里插入图片描述
如果想到其实最终利润是可以分解的,那么本题就很容易了!
如何分解呢?
假如第 0 天买入,第 3 天卖出,那么利润为:prices[3] - prices[0]。
相当于==(prices[3] - prices[2]) + (prices[2] - prices[1]) + (prices[1] - prices[0])==。
此时就是把利润分解为每天为单位的维度,而不是从 0 天到第 3 天整体去考虑!
那么根据 prices 可以得到每天的利润序列:(prices[i] - prices[i - 1])…(prices[1] - prices[0])。

  • 局部最优:收集每天的正利润,全局最优:求得最大利润。
    在这里插入图片描述
class Solution:
    def maxProfit(self, prices: List[int]) -> int:
        n = len(prices)
        dp = [0]*(n-1)
        for i in range(1,n):
            dp[i-1] = prices[i]-prices[i-1]
        res = 0
        for i in dp:
            if i>0:
                res+=i
        return res

55. 跳跃游戏

在这里插入图片描述
在这里插入图片描述
每次移动取最大跳跃步数(得到最大的覆盖范围),每移动一个单位,就更新最大覆盖范围。
贪心算法局部最优解:每次取最大跳跃步数(取最大覆盖范围),整体最优解:最后得到整体最大覆盖范围,看是否能到终点。
i 每次移动只能在 cover 的范围内移动,每移动一个元素,cover 得到该元素数值(新的覆盖范围)的补充,让 i 继续移动下去。
而 cover 每次只取 max(该元素数值补充后的范围, cover 本身范围)。
如果 cover 大于等于了终点下标,直接 return true 就可以了

class Solution:
    def canJump(self, nums: List[int]) -> bool:
        n = len(nums)
        cover = 0
        if n<2:
            return True
        for i in range(n-1):
            if cover>=i:
                cover = max(cover,i+nums[i])
            if cover>=n-1:
                return True
        return False

45.跳跃游戏 II

在这里插入图片描述
如果移动下标等于当前覆盖最大距离下标, 需要再走一步(即 ans++),因为最后一步一定是可以到的终点。(题目假设总是可以到达数组的最后一个位置),如图:
在这里插入图片描述
如果移动下标不等于当前覆盖最大距离下标,说明当前覆盖最远距离就可以直接达到终点了,不需要再走一步。如图:
在这里插入图片描述

class Solution:
    def jump(self, nums: List[int]) -> int:
		cur_distance = 0  # 当前覆盖的最远距离下标
        ans = 0  # 记录走的最大步数
        next_distance = 0  # 下一步覆盖的最远距离下标
        
        for i in range(len(nums) - 1):  # 注意这里是小于len(nums) - 1,这是关键所在
            next_distance = max(nums[i] + i, next_distance)  # 更新下一步覆盖的最远距离下标
            if i == cur_distance:  # 遇到当前覆盖的最远距离下标
                cur_distance = next_distance  # 更新当前覆盖的最远距离下标
                ans += 1
        
        return ans

1005.K次取反后最大化的数组和

在这里插入图片描述

class Solution:
    def largestSumAfterKNegations(self, nums: List[int], k: int) -> int:
        nums.sort(key=lambda x:abs(x),reverse=True)  # 按照绝对值的个数排序,且从大到小,为了后面先将前k个大负数进行翻转为正数,保证和最大
        for i in range(len(nums)):
            if nums[i]<0 and k>0:   # 将负数都翻转为正数
                k-=1
                nums[i] = -nums[i]
                
        # 现在全部都是正数了
        if k%2==1: # 如果还剩奇数个,则将最小的正数翻转
            nums[-1] = -nums[-1]

        # 如果是偶数,其实不用管,因为随便翻转个正数偶数次就可以了,不影响最后结果
        return sum(nums)

134. 加油站

135.分发糖果

在这里插入图片描述

  • 从左到右:
    如果ratings[i] > ratings[i - 1] 那么[i]的糖 一定要比[i - 1]的糖多一个,所以贪心:candyVec[i] = candyVec[i - 1] + 1
    在这里插入图片描述
  • 从右到左考虑:
    再确定左孩子大于右孩子的情况(从后向前遍历)
    遍历顺序这里有同学可能会有疑问,为什么不能从前向后遍历呢?
    因为 rating[5]与rating[4]的比较 要利用上 rating[5]与rating[6]的比较结果,所以 要从后向前遍历。
    如果从前向后遍历,rating[5]与rating[4]的比较 就不能用上 rating[5]与rating[6]的比较结果了 。如图:
    在这里插入图片描述在这里插入图片描述

如果 ratings[i] > ratings[i + 1],此时candyVec[i](第i个小孩的糖果数量)就有两个选择了,一个是candyVec[i + 1] + 1(从右边这个加1得到的糖果数量),一个是candyVec[i](之前比较右孩子大于左孩子得到的糖果数量)。
那么又要贪心了,局部最优:取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,保证第i个小孩的糖果数量既大于左边的也大于右边的。全局最优:相邻的孩子中,评分高的孩子获得更多的糖果。

所以就取candyVec[i + 1] + 1 和 candyVec[i] 最大的糖果数量,candyVec[i]只有取最大的才能既保持对左边candyVec[i - 1]的糖果多,也比右边candyVec[i + 1]的糖果多。

class Solution:
    def candy(self, ratings: List[int]) -> int:
        k = len(ratings)
        dp = [1]*k
        # 从左到右
        for i in range(k):
            if i>0 and ratings[i]>ratings[i-1]:
                dp[i] = dp[i-1]+1
        # 从右到左
        for i in range(k-2,-1,-1):
            if ratings[i]>ratings[i+1]:
                dp[i] = max(dp[i+1]+1,dp[i])  # 关键点 见解析
        return sum(dp)

860. 柠檬水找零

在这里插入图片描述

class Solution:
    def lemonadeChange(self, bills: List[int]) -> bool:
        if bills[0] != 5:
            return False
        n = len(bills)
        counter = {5: 0}
        for i in range(n):
            remain = bills[i]
            # 添加
            if remain in counter.keys():
                counter[remain] += 1
            else:
                counter[remain] = 1

            # 删除 # 若有20的,先找10元的。
            if remain // 10 > 1 and 10 in counter.keys():
                if counter[10] >= (remain // 10) - 1:  # 先找10元的。
                    counter[10] = counter[10] - ((remain // 10) - 1)
                    remain = ((remain // 10) - 1) * 10

            # 删除 若是10/20,则进行删除操作
            if remain // 5 > 1:
                if counter[5] >= (remain // 5) - 1:  # 再找5元的。剩余的5个数,大于需要找回的。
                    counter[5] = counter[5] - ((remain // 5) - 1)
                else:
                    return False
        return True

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/66893.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

zadig安装驱动潜在风险与解决策略

zadig安装驱动潜在风险与解决策略 ✨没事不要闲着乱打驱动&#xff0c;能正常使用的情况下&#xff0c;不要轻易或随意去乱打驱动&#xff0c;可能会导致新的驱动对已有的设备不兼容的问题。✨&#x1f530;特别说明&#xff1a;本文介绍的方法&#xff0c;并不能包治百病&…

【MATLAB第67期】# 源码分享 | 基于MATLAB的morris全局敏感性分析

【MATLAB第67期】# 源码分享 | 基于MATLAB的morris全局敏感性分析 一、代码展示 clear all npoint100;%在分位数超空间中要采样的点数(计算次数iternpoint*(nfac1) nfac20;%研究函数的不确定因素数量 [mu, order] morris_sa1((x)test_function(x), nfac, npoint)for t1:size…

vite跨域配置踩坑,postman链接后端接口正常,但是前端就是不能正常访问

问题一&#xff1a;怎么都链接不了后端地址 根据以下配置&#xff0c;发现怎么都链接不了后端地址&#xff0c;proxy对了呀。 仔细看&#xff0c;才发现host有问题 // 本地运行配置&#xff0c;及反向代理配置server: {host: 0,0,0,0,port: 80,// cors: true, // 默认启用并允…

vscode 搭建STM32开发环境

1.需要软件 1.1 vscode 1.2 STM32CubeMX&#xff0c;这个不是必须的&#xff0c;我是为了方便生成STM32代码 2.vscode配置 2.1安装keil Assistant 2.2配置keil Assistant 3.STMCUBE生成个STM32代码 &#xff0c;如果有自己的代码可以忽略 4.代码添加到vscode&#xff0c;并…

iPhone手机怎么恢复出厂设置(详解)

如果您的iPhone遇到了手机卡顿、软件崩溃、内存不足或者忘记手机解锁密码等问题&#xff0c;恢复出厂设置似乎是万能的解决方法。 什么是恢复出厂设置&#xff1f;简单来说&#xff0c;就是让手机重新变成一张白纸&#xff0c;将手机所有数据都进行格式化&#xff0c;只保留原…

无货源跨境电商购物平台快速搭建(微商城、小程序、APP、网站)

无货源跨境电商购物平台的快速搭建可以通过以下步骤完成&#xff0c;并且可以同时开发微商城、小程序、APP和网站以满足不同用户的需求。 第一步&#xff1a;需求分析 在搭建之前&#xff0c;需要对平台的需求进行详细的分析。包括用户需求、功能需求、技术需求等等。这一步是…

北航基于openEuler构建工业机器人操作系统,打造“开箱即用”的机器人基础软件平台

北京航空航天大学是国家“双一流”建设高校&#xff0c;以建设扎根中国大地的世界一流大学为发展目标。北京航空航天大学在机器人领域一直处于行业前沿&#xff0c;以其亮眼的成果和优秀的师资力量&#xff0c;成为国内机器人领域的重要参与者和建设者。机器人操作系统是机器人…

浅谈什么是 Spring Cloud,快速学习与使用案例(文末送书福利3.0)

文章目录 &#x1f4cb;前言&#x1f3af;什么是 Spring Cloud&#x1f3af;快速入门 Spring Cloud&#x1f9e9;使用 Eureka 进行服务注册和发现 &#x1f4dd;最后&#x1f3af;文末送书&#x1f4da;内容介绍&#x1f4da;作者介绍 &#x1f525;参与方式 &#x1f4cb;前言…

erp与crm的区别有哪些呢?两者之间有什么联系?

阅读本文您可以了解&#xff1a;1、crm系统的功能&#xff1b;2、erp系统的功能&#xff1b;3、crm系统和erp系统的区别 一、crm系统是什么 CRM系统是客户关系管理系统的缩写。它是一种用于帮助企业有效管理与客户关系相关的信息、活动和数据的软件工具或平台。 举个例子&…

【ArcGIS】经纬度数据转化成平面坐标数据

将点位置导入Gis中&#xff0c;如下&#xff08;经纬度表征位置&#xff09;&#xff1a; 如何利用Gis将其转化为平面坐标呢&#xff1f; Step1 坐标变换 坐标变换&#xff0c;打开ArcToolbox&#xff0c;找到“数据管理工具”->“投影和变换”->“要素”->“投影”…

Fastjson 使用指南

文章目录 Fastjson 使用指南0 简要说明为什么要用JSON&#xff1f;用JSON的好处是什么&#xff1f;为什么要用JSON&#xff1f;JSON好处 1 常用数据类型的JSON格式值的范围 2 快速上手2.1 依赖2.2 实体类2.3 测试类 3 常见用法3.1 序列化操作核心操作对象转换为JSON串list转换J…

[C++]类与对象(下) -- 初始化列表 -- static成员 -- 友元 -- 内部类,一篇带你深度了解。

目录 1、再谈构造函数 1.1 构造函数体赋值 1.2 初始化列表 1.2.1 初始化列表的意义 1.3 explicit关键字 2、static成员 2.1 问题引入 2.2 特性 3、友元 3.1 友元函数 3.2 友元类 4、内部类 1、再谈构造函数 1.1 构造函数体赋值 在创建对象时&#xff0c;编译器通…

nginx(八十六)uri转义杂谈

一 关于nginx uri过往整理 HTTP1.1(四)URI HTTP1.1(五)URI编码 HTTP杂谈(三)URL特殊字符 以下涉及&#xff1a; 1) location 与$uri --> 路由匹配 --> 通过debug日志观察2) proxy_paas --> attach_url是否有,有是否是变量,决定透传给上游uri的形式3) $reque…

软件编程专业:探索计算机世界的奥秘

软件编程专业&#xff1a;探索计算机世界的奥秘 随着科技的飞速发展&#xff0c;计算机已经渗透到我们生活的方方面面。我们每天都在使用各种应用程序&#xff0c;比如社交媒体、游戏和电子邮件等&#xff0c;而这些应用程序背后的魔法都是由软件编程专业的人创造的。那么&…

SpringBoot 热部署

一、启动热部署 1.1 开启开发者工具 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-devtools</artifactId><scope>runtime</scope><optional>true</optional> </dependency>…

5G用户逼近7亿,5G发展迈入下半场!

尽管普遍认为5G投资高峰期正在过去&#xff0c;但是从2023年上半年的情况来看&#xff0c;我国5G建设仍在衔枚疾走。 近日举行2023年上半年工业和信息化发展情况新闻发布会上&#xff0c;工信部人士透露&#xff0c;截至今年6月底&#xff0c;我国5G基站累计达到293.7万个&…

【数据分析】pandas (三)

基本功能 在这里&#xff0c;我们将讨论pandas数据结构中常见的许多基本功能 让我们创建一些示例对象&#xff1a; index pd.date_range(“1/1/2000”, periods8) s pd.Series(np.random.randn(5), index[“a”, “b”, “c”, “d”, “e”]). df pd.DataFrame(np.random.…

期权定价模型系列【1】—BSM通用式模型

这是期权定价模型专栏的第一篇文章&#xff0c;此专栏旨在分享一些期权定价模型&#xff0c;将会从最基础的BSM模型开始写起&#xff0c;逐步扩散到蒙特卡洛模拟、二叉树等数值法模型&#xff0c;以及跳跃扩散模型、随机波动率模型&#xff0c;神经网络模型等等。 如果你觉得有…

el-select与el-tree结合使用,实现select框下拉使用树形结构选择数据

使用el-select与el-tree&#xff0c;实现如下效果&#xff0c; 代码如下&#xff1a; 注意点&#xff1a;搜索input框的代码一点放在option上面&#xff0c;不要放在option里面&#xff0c;否则一点击搜索框&#xff0c;下拉框就会收起来&#xff0c;不能使用。 <el-select…

【BASH】回顾与知识点梳理(十七)

【BASH】回顾与知识点梳理 十七 十七. 什么是 Shell scripts17.1 干嘛学习 shell scripts自动化管理的重要依据追踪与管理系统的重要工作简单入侵检测功能连续指令单一化简易的数据处理跨平台支持与学习历程较短 17.2 第一支 script 的撰写与执行撰写第一支 script 17.3 撰写 s…