AIGC:【LLM(五)】——Faiss:高效的大规模相似度检索库

文章目录

    • 一.简介
      • 1.1 什么是Faiss
      • 1.2 Faiss的安装
    • 二.Faiss检索流程
      • 2.1 构建向量库
      • 2.2 构建索引
      • 2.3 top-k检索
    • 三.Faiss构建索引的多种方式
      • 3.1 Flat :暴力检索
      • 3.2 IVFx Flat :倒排暴力检索
      • 3.3 IVFxPQy 倒排乘积量化
      • 3.4 LSH 局部敏感哈希
      • 3.5 HNSWx

一.简介

1.1 什么是Faiss

Faiss的全称是Facebook AI Similarity Search,是Facebook的AI团队针对大规模相似度检索问题开发的一个工具,使用C++编写,有python接口,对10亿量级的索引可以做到毫秒级检索的性能。
简单来说,Faiss的工作就是把我们自己的候选向量集封装成一个index数据库,它可以加速我们检索相似向量top-K的过程,其中有些索引还支持GPU构建。

1.2 Faiss的安装

## cpu版
$ conda install -c pytorch faiss-cpu
## gpu版
$ conda install -c pytorch faiss-gpu

二.Faiss检索流程

2.1 构建向量库

这一部分就是将我们已有的数据转成向量库。

import numpy as np
d = 64                                           # 向量维度
nb = 100000                                      # index向量库的数据量
nq = 10000                                       # 待检索query的数目
np.random.seed(1234)             
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.                # index向量库的向量
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.                # 待检索的query向量

2.2 构建索引

用faiss 构建index,并将向量添加到index中。这里我们选用暴力检索的方法FlatL2,L2代表构建的index采用的相似度度量方法为L2范数,即欧氏距离。

import faiss          
index = faiss.IndexFlatL2(d)             
print(index.is_trained)         # 输出为True,代表该类index不需要训练,只需要add向量进去即可
index.add(xb)                   # 将向量库中的向量加入到index中
print(index.ntotal)             # 输出index中包含的向量总数,为100000 

2.3 top-k检索

检索与query最相似的top-k。

k = 4                     # topK的K值
D, I = index.search(xq, k)# xq为待检索向量,返回的I为每个待检索query最相似TopK的索引list,D为其对应的距离
print(I[:5])
print(D[-5:])

三.Faiss构建索引的多种方式

构建index方法和传参方法可以为:

dim, measure = 64, faiss.METRIC_L2
param = 'Flat'
index = faiss.index_factory(dim, param, measure)
  • dim为向量维数
  • 最重要的是param参数,它是传入index的参数,代表需要构建什么类型的索引;
  • measure为度量方法,目前支持两种,欧氏距离和inner product,即内积。因此,要计算余弦相似度,只需要将vecs归一化后,使用内积度量即可。

此外,Faiss官方支持八种度量方式,分别是:
1)METRIC_INNER_PRODUCT(内积)
2)METRIC_L1(曼哈顿距离)
3)METRIC_L2(欧氏距离)
4)METRIC_Linf(无穷范数)
5)METRIC_Lp(p范数)
6)METRIC_BrayCurtis(BC相异度)
7)METRIC_Canberra(兰氏距离/堪培拉距离)
8)METRIC_JensenShannon(JS散度)

3.1 Flat :暴力检索

  • 优点:该方法是Faiss所有index中最准确的,召回率最高的方法,没有之一;
  • 缺点:速度慢,占内存大。
  • 使用情况:向量候选集很少,在50万以内,并且内存不紧张。
  • Ps:虽然都是暴力检索,faiss的暴力检索速度比一般程序猿自己写的暴力检索要快上不少,所以并不代表其无用武之地,建议有暴力检索需求的同学还是用下faiss。
  • 构建方法
dim, measure = 64, faiss.METRIC_L2
param = 'Flat'
index = faiss.index_factory(dim, param, measure)
index.is_trained                                   # 输出为True
index.add(xb)                                      # 向index中添加向量

3.2 IVFx Flat :倒排暴力检索

  • 优点:IVF主要利用倒排的思想,在文档检索场景下的倒排技术是指,一个kw后面挂上很多个包含该词的doc,由于kw数量远远小于doc,因此会大大减少了检索的时间。在向量中如何使用倒排呢?可以拿出每个聚类中心下的向量ID,每个中心ID后面挂上一堆非中心向量,每次查询向量的时候找到最近的几个中心ID,分别搜索这几个中心下的非中心向量。通过减小搜索范围,提升搜索效率。
  • 缺点:速度也还不是很快。
  • 使用情况:相比Flat会大大增加检索的速度,建议百万级别向量可以使用。
  • 参数:IVFx中的x是k-means聚类中心的个数
  • 构建方法
dim, measure = 64, faiss.METRIC_L2 
param = 'IVF100,Flat'                           # 代表k-means聚类中心为100,   
index = faiss.index_factory(dim, param, measure)
print(index.is_trained)                          # 此时输出为False,因为倒排索引需要训练k-means,
index.train(xb)                                  # 因此需要先训练index,再add向量
index.add(xb)

3.3 IVFxPQy 倒排乘积量化

  • 优点:工业界大量使用此方法,各项指标都均可以接受,利用乘积量化的方法,改进了IVF的k-means,将一个向量的维度切成x段,每段分别进行k-means再检索。
  • 缺点:集百家之长,自然也集百家之短
  • 使用情况:一般来说,各方面没啥特殊的极端要求的话,最推荐使用该方法!
  • 参数:IVFx,PQy,其中的x和y同上
  • 构建方法
dim, measure = 64, faiss.METRIC_L2  
param =  'IVF100,PQ16'
index = faiss.index_factory(dim, param, measure) 
print(index.is_trained)                          # 此时输出为False,因为倒排索引需要训练k-means, 
index.train(xb)                                  # 因此需要先训练index,再add向量 index.add(xb)
index.add(xb)

3.4 LSH 局部敏感哈希

  • 原理:哈希对大家再熟悉不过,向量也可以采用哈希来加速查找,我们这里说的哈希指的是局部敏感哈希(Locality Sensitive Hashing,LSH),不同于传统哈希尽量不产生碰撞,局部敏感哈希依赖碰撞来查找近邻。高维空间的两点若距离很近,那么设计一种哈希函数对这两点进行哈希计算后分桶,使得他们哈希分桶值有很大的概率是一样的,若两点之间的距离较远,则他们哈希分桶值相同的概率会很小。
  • 优点:训练非常快,支持分批导入,index占内存很小,检索也比较快
  • 缺点:召回率非常拉垮。
  • 使用情况:候选向量库非常大,离线检索,内存资源比较稀缺的情况
  • 构建方法
dim, measure = 64, faiss.METRIC_L2  
param =  'LSH'
index = faiss.index_factory(dim, param, measure) 
print(index.is_trained)                          # 此时输出为True
index.train(xb) 
index.add(xb)

3.5 HNSWx

  • 优点:该方法为基于图检索的改进方法,检索速度极快,10亿级别秒出检索结果,而且召回率几乎可以媲美Flat,最高能达到惊人的97%。检索的时间复杂度为loglogn,几乎可以无视候选向量的量级了。并且支持分批导入,极其适合线上任务,毫秒级别体验。
  • 缺点:构建索引极慢,占用内存极大(是Faiss中最大的,大于原向量占用的内存大小)
  • 参数:HNSWx中的x为构建图时每个点最多连接多少个节点,x越大,构图越复杂,查询越精确,当然构建index时间也就越慢,x取4~64中的任何一个整数。
  • 使用情况:不在乎内存,并且有充裕的时间来构建index
  • 构建方法
dim, measure = 64, faiss.METRIC_L2   
param =  'HNSW64' 
index = faiss.index_factory(dim, param, measure)  
print(index.is_trained)                          # 此时输出为True 
index.add(xb)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/66846.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

objectMapper.getTypeFactory().constructParametricType 方法的作用和使用

在使用 Jackson 库进行 JSON 数据的序列化和反序列化时,经常会使用到 ObjectMapper 类。其中,objectMapper.getTypeFactory().constructParametricType 方法用于构造泛型类型。 具体作用和使用如下: 作用: 构造泛型类型&#x…

分支和循环语句(2)(C语言)

目录 do...while()循环 do语句的语法 do语句的特点 do while循环中的break和continue 练习 goto语句 do...while()循环 do语句的语法 do 循环语句; while(表达式); do语句的特点 循环至少执行一次,使用的场景有限,所以不是经常使用。 #inc…

stm32 cubemx can通讯(1)回环模式

文章目录 前言一、cubemx配置二、代码1.过滤器的配置(后续会介绍)2.main.c3.主循环 总结 前言 介绍使用stm32cubemx来配置can,本节讲解一个简答,不需要stm32的can和外部连接,直接可以用于验证的回环模式。 所谓回环模…

Day 19 C++ 文件操作

C 文件操作 文件为什么要使用文件文件类型文本文件 - 文件以文本的ASCII码形式存储在计算机中二进制文件 - 文件以文本的二进制形式存储在计算机中 操作类型ofstream:写操作ifstream: 读操作fstream : 读写操作 文本文件写文件引入头文件 \&l…

排序(快速排序,归并排序,插入排序,选择排序,冒泡排序,希尔排序,堆排序)

给定你一个长度为 n 的整数数列。 请你对这个数列按照从小到大进行排序。 并将排好序的数列按顺序输出。 输入格式 输入共两行,第一行包含整数 n 。 第二行包含 n 个整数(所有整数均在 1∼109 范围内),表示整个数列。 输…

消息队列比较

、ActiveMQ 优点:单机吞吐量万级,时效性ms级,可用性高,基于主从架构实现高可用性,消息可靠性较低的概率丢失数据。 缺点:官方社区现在对ActiveMQ5.X维护越来越少了,高吞吐量场景较少使用。 2、K…

Linux小型操作系统项目,《操作系统真象还原》第三章——完善MBR

前引 上一章我们完成了MBR的雏形编写,但是只打印了几个字符,这一章我们才要真正地去完成MBR的功能。 在完成MBR的功能之前我们要先了解一些知识,首先介绍什么是实模式。 书上的内容实在繁杂,简单地说,实模式没有虚拟和…

VR内容定制 | VR内容中控管理平台可以带来哪些价值?

随着科技的不断发展,虚拟现实(VR)技术已经逐渐渗透到各个领域,其中教育领域也不例外。通过VR技术,学生可以身临其境地参与到各种场景中,获得更加直观、生动的学习体验。为了让教师更好地进行VR教学的设计和管理,提高教…

jmeter测试rpc接口-使用dubbo框架调用【杭州多测师_王sir】

1.基于SOAP架构。基于XML规范。基于WebService协议。特点:接口地址?wsdl结尾2.基于RPC架构,基于dubbo协议,thrift协议。SpringCloud微服务。3.基于RestFul架构,基于json规范。基于http协议(我们常用的都是这种,cms平台也是) Rest…

iOS开发-JsonModel的学习及使用

IOS JsonModel的学习及使用 当我们从服务端获取到json数据后的时候,我们需要在界面上展示或者保存起来,下面来看下直接通过NSDictionary取出数据的情况。 NSDictionary直接取出数据的诟病。 NSString *name [self.responseObj objectForKey:"nam…

Flink源码之JobManager启动流程

从启动命令flink-daemon.sh中可以看出StandaloneSession入口类为org.apache.flink.runtime.entrypoint.StandaloneSessionClusterEntrypoint, 从该类的main方法会进入ClusterEntrypoint::runCluster中, 该方法中会创建出主要服务和组件。 StandaloneSessionClusterEntrypoint:…

Maven进阶1 -- 分模块开发、依赖管理、聚合与继承、属性、版本管理、多环境开发、跳过测试

目录 1.分模块开发 将原始模块按照功能拆分成若干个子模块&#xff0c;方便模块间的相互调用&#xff0c;接口共享。 案例&#xff1a;拆分一下这个SSM整合案例 ①创建maven模块 demo项目下的pom.xml文件&#xff08;主要看一下依赖&#xff09; <dependencies><!…

黑马头条项目学习--Day2: app端文章查看,静态化freemarker,分布式文件系统minIO

app端文章 Day02: app端文章查看&#xff0c;静态化freemarker,分布式文件系统minIOa. app端文章列表查询1) 需求分析2) 实现思路 b. app端文章详细1) 需求分析2) Freemarker概述a) 基础语法种类b) 集合指令&#xff08;List和Map&#xff09;c) if指令d) 运算符e) 空值处理f) …

GIS在地质灾害危险性评估与灾后重建中的应用教程

详情点击链接&#xff1a;GIS在地质灾害危险性评估与灾后重建中的实践技术应用 前言 地质灾害是指全球地壳自然地质演化过程中&#xff0c;由于地球内动力、外动力或者人为地质动力作用下导致的自然地质和人类的自然灾害突发事件。由于降水、地震等自然作用下&#xff0c;地质…

《合成孔径雷达成像算法与实现》Figure3.7

代码复现如下&#xff1a; clc clear all close all%参数设置 TBP 100; %时间带宽积 T 10e-6; %脉冲持续时间%参数计算 B TBP/T; …

MySQL — InnoDB介绍

文章目录 InnoDB 主要特点InnoDB 架构In-Memory StructuresBuffer PoolChange BufferAdaptive Hash IndexLog Buffer On-Disk StructuresSystem TablespaceFile-Per-Table TablespacesGeneral TablespacesUndo TablespacesTemporary TablespacesDoublewrite BufferRedo LogUndo…

半导体器件||的学习

电子管的介绍&#xff1a; 到底什么是电子管&#xff08;真空管&#xff09;&#xff1f; - 知乎 芯片破壁者&#xff08;一&#xff09;&#xff1a;从电子管到晶体管“奇迹”寻踪 - 知乎 晶体管&#xff1a; 什么是晶体管&#xff1f;它有什么作用&#xff1f; - 知乎 改…

多个配置WebMvcConfigurationSupport失效问题

最近在项目中用类继承WebMvcConfigurationSupport实现拦截器 Configuration RequiredArgsConstructor public class SpringWebSupport extends WebMvcConfigurationSupport {private final ProjectInterceptor projectInterceptor;// 拦截器 //设置拦截器对象和拦截请求Ove…

java 企业工程管理系统软件源码+Spring Cloud + Spring Boot +二次开发+ MybatisPlus + Redis em

​ 鸿鹄工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离构建工程项目管理系统 1. 项目背景 一、随着公司的快速发展&#xff0c;企业人员和经营规模不断壮大。为了提高工程管理效率、减轻劳动强度、提高信息处理速度和准确性&#xff0c;公司对内…

5G RedCap

5G RedCap指的是3GPP所提出的5G标准。与之前发布的5G标准相比&#xff0c;功能更加精简。5G RedCap于2019年6月首次被纳入3GPP R17研究项目。 把一些不必要的功能去掉就可以带来模组价格的降低。背后的基本想法是&#xff1a;为物联网应用定义一种新的、不那么复杂的NR设备。 …