特别实用的8个机器学习算法总结!建议收藏,反复观看!

个人主页:.Boss.-CSDN博客

目录

1.线性回归(Linear Regression)

2.多项式回归(Polynomial Regression)

3.岭回归(Ridge Regression)

4.Lasso回归(Lasso Regression)

5弹性网络回归(Elastic Net Regression)

6.逻辑斯蒂回归(Logistic Regression)

7.决策树回归(Decision Tree Regression)

最后

关于回归这一类算法的总结,我见到过的有简单的,也有特别详细的。百花齐放,各有优略!

今天总结了关于回归算法的方方面面,涉及到原理的解释、入门代码等等。

总的来说,回归算法是一类用于预测连续数值输出的监督学习算法。

根据输入特征预测一个或多个目标变量。

回归算法有多个分支和变种,每个分支都有其独特的优缺点。

今天要说的有8个部分,大家伙请看~

  • 线性回归

  • 多项式回归

  • 岭回归

  • Lasso回归

  • 弹性网络回归

  • 逻辑斯蒂回归

  • 决策树回归

  • 随机森林回归

大家伙如果觉得还不错!可以点赞、收藏鼓励博主,谢谢。

1.线性回归(Linear Regression)

首先,线性回归(Linear Regression)是一种用于建立连续数值输出与一个或多个输入特征之间关系的监督学习算法。

它假设输出与输入特征之间存在线性关系,即可以用一条直线来拟合数据。

线性回归的目标是找到一条最佳拟合直线,以最小化预测值与真实值之间的误差。

下面是一个简单的案例,随机生成的数据来演示:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression

# 生成随机数据
np.random.seed(0)
X = np.random.rand(100, 1)  # 输入特征
y = 2 * X + 1 + 0.1 * np.random.randn(100, 1)  # 生成输出数据,带有一些噪声

# 创建线性回归模型
model = LinearRegression()

# 拟合模型
model.fit(X, y)

# 预测
y_pred = model.predict(X)

# 绘制原始数据和拟合直线
plt.scatter(X, y, label='Original Data')
plt.plot(X, y_pred, color='red', linewidth=3, label='Fitted Line')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.title('Linear Regression Example')
plt.show()

上面案例中,使用LinearRegression模型拟合数据,并绘制了原始数据和拟合直线的可视化图表。

实际情况下,可以根据自己的需求修改输入数据和模型来适应不同的案例。

2.多项式回归(Polynomial Regression)

多项式回归是一种回归分析方法,它通过使用多项式函数来拟合数据,而不仅仅是线性函数。

多项式回归通常用于处理数据与因变量之间的非线性关系,这种关系不能用线性回归来准确建模。

多项式回归的一般形式可以表示为:

下面展示如何进行多项式回归,包括数据生成、拟合模型以及可视化。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression

# 生成随机数据
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.cos(X).ravel() + np.random.randn(80) * 0.1

# 使用多项式特征扩展
poly = PolynomialFeatures(degree=4)  # 选择多项式的阶数
X_poly = poly.fit_transform(X)

# 创建线性回归模型
model = LinearRegression()
model.fit(X_poly, y)

# 预测
X_test = np.linspace(0, 5, 100)[:, np.newaxis]
X_test_poly = poly.transform(X_test)
y_pred = model.predict(X_test_poly)

# 绘制原始数据和拟合曲线
plt.scatter(X, y, label='Original Data')
plt.plot(X_test, y_pred, label='Polynomial Regression', color='r')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.title('Polynomial Regression Example')
plt.show()

在这个示例中,首先生成了一组随机的数据点,然后使用四次多项式来拟合这些数据。

拟合后,我们绘制了原始数据点和拟合曲线的可视化图表。

你可以根据自己的数据和需求,修改多项式的阶数和其他参数来进行多项式回归分析,以更好地拟合你的数据。

3.岭回归(Ridge Regression)

在多重共线性存在时,传统的线性回归模型可能会导致参数估计不稳定,岭回归通过引入正则化项来解决这个问题。

岭回归的目标函数如下所示:

首先,我们生成一个模拟的数据集,以便演示岭回归的效果,并使用matplotlib库进行可视化。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Ridge
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

# 生成模拟数据集
np.random.seed(0)
n_samples, n_features = 200, 5
X = np.random.randn(n_samples, n_features)
true_coefficients = np.array([4, 2, 0, 0, -1])
y = X.dot(true_coefficients) + np.random.randn(n_samples) * 1.0

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 使用岭回归拟合数据
alpha = 1.0  # 正则化强度参数
ridge = Ridge(alpha=alpha)
ridge.fit(X_train, y_train)

# 输出岭回归模型的系数
print("Ridge Regression Coefficients:", ridge.coef_)

# 计算模型在测试集上的R^2分数
r_squared = ridge.score(X_test, y_test)
print("R-squared:", r_squared)

# 绘制实际值和预测值的散点图
plt.scatter(y_test, ridge.predict(X_test))
plt.xlabel("Actual Values")
plt.ylabel("Predicted Values")
plt.title("Ridge Regression: Actual vs. Predicted")
plt.show()

这个示例演示了如何使用岭回归来处理多重共线性问题,并可视化实际值与预测值之间的关系。

要注意的是,可以调整超参数alpha的值以控制正则化的强度。

4.Lasso回归(Lasso Regression)

Lasso回归(Least Absolute Shrinkage and Selection Operator Regression)是一种线性回归的变体,它用于数据特征选择和降维。

与普通线性回归不同,Lasso回归通过对系数进行L1正则化来惩罚模型中的不重要的特征,以促使模型选择更少的特征,从而提高模型的泛化能力。

L1正则化通过在损失函数中添加系数的绝对值之和来实现,这迫使一些系数变为零,从而实现特征选择的效果。

Lasso回归的损失函数如下所示:

以下是一个Python案例,演示如何使用Lasso回归拟合一个数据集并可视化结果。我们将使用一个合成的数据集来说明,该数据集包含两个特征和一个目标变量。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_regression
from sklearn.linear_model import Lasso
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

# 生成合成数据集
X, y = make_regression(n_samples=100, n_features=2, noise=0.5, random_state=42)

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 创建Lasso回归模型
alpha = 1.0  # 正则化参数
lasso = Lasso(alpha=alpha)

# 拟合模型
lasso.fit(X_train, y_train)

# 预测测试集
y_pred = lasso.predict(X_test)

# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"Mean Squared Error: {mse:.2f}")

# 绘制特征系数
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], y, label='Feature 1')
plt.scatter(X[:, 1], y, label='Feature 2')
plt.xlabel('Features')
plt.ylabel('Target')
plt.title('Original Data')
plt.legend()

plt.subplot(1, 2, 2)
plt.bar(['Feature 1', 'Feature 2'], lasso.coef_)
plt.xlabel('Features')
plt.ylabel('Coefficient Value')
plt.title('Lasso Coefficients')
plt.show()

上述代码演示了如何使用Lasso回归对合成数据集进行建模,并且展示了特征系数的可视化。

实际情况中,可以根据自己的数据集和需求调整代码来使用Lasso回归进行特征选择和建模。

5弹性网络回归(Elastic Net Regression)

弹性网络回归(Elastic Net Regression)是一种用于处理回归问题的线性模型,它结合了L1正则化(Lasso正则化)和L2正则化(Ridge正则化)的特性,以解决特征选择和过拟合问题。

它的损失函数由两部分组成,一部分是均方误差(Mean Squared Error,MSE),另一部分是L1L2正则化项的组合。

下面案例演示如何使用弹性网络回归处理一个数据集,并绘制可视化图表。

同样的也是使用一个自动生成的示例数据集。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import ElasticNet
from sklearn.datasets import make_regression

# 生成示例数据集
X, y = make_regression(n_samples=100, n_features=1, noise=10, random_state=42)

# 创建弹性网络回归模型
elastic_net = ElasticNet(alpha=0.5, l1_ratio=0.5, random_state=42)

# 拟合模型
elastic_net.fit(X, y)

# 预测
y_pred = elastic_net.predict(X)

# 绘制原始数据和拟合线
plt.scatter(X, y, label='Actual Data', color='b')
plt.plot(X, y_pred, label='Elastic Net Regression', color='r')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.title('Elastic Net Regression')
plt.show()

# 打印模型系数
print("Elastic Net Coefficients:")
print("Intercept:", elastic_net.intercept_)
print("Coefficient:", elastic_net.coef_)

在这个案例中,我们首先生成了一个简单的示例数据集,然后创建了一个弹性网络回归模型,拟合数据并进行了预测。

最后,我们使用Matplotlib绘制了原始数据和拟合线的可视化图表,并打印了模型的系数。

你可以根据自己的需求和数据集来调整正则化参数α和λ以及数据集的大小以获得更好的效果和可视化。

6.逻辑斯蒂回归(Logistic Regression)

逻辑斯蒂回归(Logistic Regression)是一种用于分类问题的统计学习方法。

通过建立一个逻辑斯蒂函数(也称为S型函数)来预测二分类问题中的概率。

逻辑斯蒂函数将输入值映射到0和1之间的概率值,通常用于估计某个事件发生的概率。

数学表达式:

通过训练,我们可以找到最佳的权重和偏置项来最大程度地拟合训练数据,从而用于分类新的数据点。

以下演示如何使用逻辑斯蒂回归进行分类,并使用可视化图表展示结果。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.preprocessing import StandardScaler

# 生成模拟数据
X, y = make_classification(n_samples=1000, n_features=2, n_classes=2, n_clusters_per_class=1, n_redundant=0, random_state=42)

# 数据标准化
scaler = StandardScaler()
X = scaler.fit_transform(X)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 训练逻辑斯蒂回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy:.2f}')

# 绘制决策边界和数据点
xx, yy = np.meshgrid(np.linspace(X[:, 0].min() - 1, X[:, 0].max() + 1, 100),
                     np.linspace(X[:, 1].min() - 1, X[:, 1].max() + 1, 100))
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)

plt.contourf(xx, yy, Z, cmap=plt.cm.RdBu, alpha=0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdBu, marker='o')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('Logistic Regression Decision Boundary')
plt.show()

这个示例生成了一个模拟的二分类数据集,并使用逻辑斯蒂回归模型进行训练和预测。

7.决策树回归(Decision Tree Regression)

决策树回归(Decision Tree Regression)是一种用于预测连续型目标变量的机器学习方法。

与分类决策树不同,决策树回归的目标是通过构建树状结构来拟合数据,以便对连续值的输出进行预测。

决策树回归的主要思想是将数据集分割成不同的子集,然后在每个子集上拟合一个简单的线性模型(通常是均值),最终形成一个树状结构,使得每个叶节点都包含一个用于预测的数值。

以下展示如何使用决策树回归来预测房屋价格的案例。

使用sklearn库进行建模和可视化。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor

# 创建一个模拟数据集
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel() + np.random.normal(0, 0.1, X.shape[0])

# 训练决策树回归模型
regressor = DecisionTreeRegressor(max_depth=5)
regressor.fit(X, y)

# 生成预测结果
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_pred = regressor.predict(X_test)

# 绘制原始数据和决策树回归结果
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_pred, color="cornflowerblue", linewidth=2, label="prediction")
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()

上面案例中,我们首先生成了一个模拟数据集,然后使用决策树回归模型对数据进行拟合,并生成了预测结果的可视化图表。

你可以根据实际情况替换数据集和调整模型的参数来适应不同的案例。这个案例提供了一个简单的起点,帮助大家了解如何使用决策树回归来解决回归问题,并可视化结果。

8.随机森林回归(Random Forest Regression)

随机森林回归(Random Forest Regression)是一种集成学习方法,用于解决回归问题。

基于多个决策树构建,通过组合这些树的预测结果来提高模型的性能和稳定性。

随机森林回归简要介绍:

  • 随机性:随机森林采用随机抽样技术,从训练数据中随机选择样本,并在每个决策树的节点上随机选择特征,以降低过拟合的风险。

  • 集成:多个决策树的预测结果被组合,通常采用平均值(对于回归问题)或投票(对于分类问题)来生成最终的预测结果,这有助于降低模型的方差。

  • 特征选择:在构建每个决策树时,随机森林只考虑特征的随机子集,从而增加了模型的多样性。

  • 鲁棒性:由于随机森林由多个决策树组成,它对于噪声和异常值的鲁棒性较高,可以提供更稳定的预测。

随机森林回归的公式与上述提到的相同,即预测值是多个决策树预测结果的平均值。

假设我们有一个回归问题,其中我们希望预测目标变量 ,并且我们有一个包含  个样本的训练数据集,其中每个样本有  m个特征。

目标是使用随机森林回归来预测目标变量。

随机森林回归的预测值y pred 可以通过多个决策树的预测结果的平均值来计算:

这个公式表示随机森林回归的最终预测是多个决策树预测的平均值。由于随机性和多样性,随机森林通常能够提供较稳定和准确的回归预测。

下面,将使用随机森林回归来预测气温。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error

# 创建一个示例数据集
np.random.seed(0)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel() + np.random.rand(80)

# 创建随机森林回归模型
rf_regressor = RandomForestRegressor(n_estimators=100, random_state=42)

# 训练模型
rf_regressor.fit(X, y)

# 预测
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_pred = rf_regressor.predict(X_test)

# 计算均方误差
mse = mean_squared_error(y, rf_regressor.predict(X))
print("Mean Squared Error:", mse)

# 绘制真实值和预测值的可视化图表
plt.figure(figsize=(10, 6))
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_pred, color="cornflowerblue", linewidth=2, label="prediction")
plt.xlabel("data")
plt.ylabel("target")
plt.title("Random Forest Regression")
plt.legend()
plt.show()

这个示例使用随机森林回归模型来拟合一个带有噪声的正弦曲线,并绘制出真实值和模型预测值的可视化图表,以及均方误差(Mean Squared Error)作为性能指标。

最后

今天介绍了8个机器学习中回归类算法的总结,以及不同情况使用的特征。

总的来说,不同的回归模型适用于不同的场景 :

线性回归: 适用于特征与目标之间呈线性关系的情况,例如简单的回归分析、连续型数值预测等。

多项式回归:当特征与目标之间的关系呈现出非线性趋势时,可以使用多项式回归来拟合曲线关系,适用于二次、三次等多项式关系。

岭回归: 在线性回归中存在多重共线性(特征之间高度相关)时,岭回归可以用来稳定模型。它也有助于防止过拟合。

Lasso回归: 适用于具有许多特征的数据集,可以帮助选择最重要的特征,同时进行特征选择和回归。

弹性网络回归:当需要在回归中同时考虑L1正则化(Lasso)和L2正则化(岭回归)的情况下,弹性网络回归是一种选择。

逻辑斯蒂回归:适用于二元分类问题,预测概率为某一类的情况。例如,预测是否购买、是否患病等问题。

决策树回归:适用于非线性、非连续性数据,对于复杂的数据分布和特征之间的交互关系具有较好的拟合能力。

随机森林回归:对于高维数据和大规模数据集,随机森林回归通常表现良好。它也能够处理多重共线性问题,并提供特征重要性评估。

每种回归方法都有其独特的优势和局限性,因此在选择时需要考虑数据的特点、建模的目标以及模型的性能需求。

通常,建议尝试多种方法,并使用交叉验证等技术来评估它们的性能,然后选择最适合特定问题的方法。

喜欢的朋友可以收藏、点赞。谢谢

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/667851.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

杰理-7014配置

杰理-7014配置 1.复制 7012A7 添加一个板级 2.根据自己的功能修改板级 & 以下修改(4M 7014f3) download.bat 修改调用文件 0x3E0000计算方法 echo offecho ******************************************************************************** e…

【Linux】开发工具入门指南,轻松掌握你的开发利器

开发工具 1. 软件包管理器yum1.1 软件包安装方式1.2 yum的"三板斧"1.3 yum的周边 2. 开发工具3. 编辑器vim4. 编译器gcc、g5. 项目自动化构建工具make、Makefile6. 进度条小程序7. 调试器gdb 1. 软件包管理器yum 1.1 软件包安装方式 源代码安装:用户手动…

vue中大屏可视化适配所有屏幕大小

1. 外部盒子 .screenBox {width: 100vw;height: 100vh;background: url("/assets/images/bg.png") no-repeat;background-size: cover; }2.比例盒子 外层盒子css定义 .boxScale {width: 1920px;height: 1080px;background-color: orange;transform-origin: left top;…

分享一个在linux中运行通义千问的方法

分享一个在linux中和通义千问交互的方法 效果展示: 整体步骤 分享一个在linux中和通义千问交互的方法效果展示:一、在阿里云appflow控制台创建连接流1、通过以下地址,在灵积平台创建个API-KEY,用于通义千问的连接凭证2、点击连接流-创建连接流3、第一步选择webhook4.第二步…

电磁兼容整改时磁环怎么选型

电磁兼容整改时磁环怎么选型 磁环的选型错误磁环特性纳米微晶磁环磁环选型示例磁环选型 一条线缆两端都有设备,那磁环应该放在哪里? 我们怎么样来选择这个磁环,通过磁环的吸收作用,让辐射的强度和传导发射的这个强度衰减更大的那我…

OpenCASCADE入门(2)——openCasCade7.6.0版本的exe方式安装,vs2017环境配置,编译和使用draw

3rd party Components | Open CASCADE Technology 目录 引出安装好vs2017和occt7.6设置环境变量 启动occt和编译关于custom.bat批处理文件双击运行 打开draw使用方式一:双击draw.bat批处理vs设置启动项 总结其他自定义信号和槽1.自定义信号2.自定义槽3.建立连接4.进…

【Vue】v-for中的key

文章目录 一、引入问题二、分析问题 一、引入问题 语法: key属性 "唯一值" 作用:给列表项添加的唯一标识。便于Vue进行列表项的正确排序复用。 为什么加key:Vue 的默认行为会尝试原地修改元素(就地复用)…

盘点那些对公关理解的误区

逢年过节回老家,亲朋好友都会问,你在北京做什么工作啊?小马识途营销顾问有几次说是做公关的,得到的回应很怪异,“那你酒量一定不错”“就是经常去酒店的那种吗?”“公关小姐?公关先生&#xff1…

[有监督学习]4.详细图解支持向量机

支持向量机 支持向量机(Support Vector Machine,SVM)是一种应用范围非常广泛的算法,既可以用于分类,也可以用于回归。 本节将介绍如何将线性支持向量机应用于二元分类问题,以间隔(margin&#…

提升船舶安全性与效率:隔离驱动芯片的应用

随着科技的不断发展,船舶行业也在不断迎来新的技术革新,其中隔离驱动芯片作为一种关键的电子元件,在船舶领域发挥着重要作用。本文将深入探讨隔离驱动芯片在船舶领域的应用及其技术特点。 隔离驱动芯片提升船舶系统安全性 船舶作为大型交通工…

View->Bitmap缩放到自定义ViewGroup的任意区域(Matrix方式绘制Bitmap)

Bitmap缩放和平移 加载一张Bitmap可能为宽高相同的正方形,也可能为宽高不同的矩形缩放方向可以为中心缩放,左上角缩放,右上角缩放,左下角缩放,右下角缩放Bitmap中心缩放,包含了缩放和平移两个操作&#xf…

Java进阶学习笔记32——Calendar

为什么要学习Calendar? 原来的方法: 使用Calendar 从API文档中,可以看到Calendar是一个抽象类,抽象类是不能创建对象,不能直接使用的。 package cn.ensource.d3_time;import java.util.Calendar; import java.util.Da…

基于Raspi的Opencv-Python开发笔记

本文所有未强调 “windows终端” 的 “终端”字眼,都是默认树莓派的终端 系统版本 系统版本有必要强调一下,因为不同版本很多操作需要修改 在终端输入uname -a Release就是版本号,Codename是版本名 以下操作仅在此版本验证可行 使能摄像…

传感器和变送器的区别介绍

从它的名称来看,传与感二字。传是指传输,感是指感知。实际上是先有感知,其次转换,最后传输。因此传输是目的,转换是手段,感知是基础。把能够将被测变量(温度、压力、液位、流量)感知…

内存管理【C++】

内存分布 C中的内存区域主要有以下5种 栈(堆栈):存放非静态局部变量/函数参数/函数返回值等等,栈是向下增长的【地址越高越先被使用】。栈区内存的开辟和销毁由系统自动执行 堆:用于程序运行时动态内存分配&#xff…

C++入门3——类与对象2(类的6个默认成员函数)

目录 1.类的6个默认成员函数 2. 构造函数 2.1 构造函数的概念 2.2 构造函数的特性 3. 析构函数 3.1 析构函数的概念 3.2 析构函数的特性 4.拷贝构造函数 4.1 拷贝构造函数的概念 4.2 拷贝构造函数的特性 5.赋值运算符重载函数 5.1运算符重载函数 5.2 赋值运算符重…

docker一键部署EFK系统(elasticsearch filebeat kibana metricbeat es-head)

EFK日志系统搭建 EFK日志系统介绍功能需求搭建elasticsearch集群规划前提部署核对证书及权限 EFK日志系统介绍 Elasticsearch 是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大量日志数据,也可用于…

Vue3-路由详解

文章目录 路由对路由的理解安装 Vue Router基本切换效果两个注意点路由器工作模式to的两种写法命名路由嵌套路由路由传参query参数params参数 路由的props配置replace属性编程式导航重定向 更多相关内容可查看 路由 附git地址:https://gitee.com/its-a-little-bad/…

打印机的ip不同且连不上

打印机的ip不同且连不上 1.问题分析2.修改网段3.验证网络 1.问题分析 主要是打印机的网段和电脑不在同一个网段 2.修改网段 3.验证网络

CATO原理中的数学与魔术(十一)——Parity Principle及其应用二:集合的可视化...

早点关注我,精彩不错过! 上篇文章中,我们已经进入了CATO原理魔术介绍的深水区,是第3个系列Parity Principle中集合性质的章节,聊到了关于张数和求和集合性质,并对性质之间的偏序关系,性质之间的…