基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

......................................................................
%fine regular grid
NSamples      = 4;%采样间隔
Im            = double(images(:,:,1));%R通道图像
image2(:,:,1) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image2(:,:,2) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image2(:,:,3) = func_SOMP_tops1(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用

subplot(222);
imshow(uint8(image2));%显示重构效果图
hold on;
%显示白色点
for i = 1:R_size%循环
    for j = 1:C_size%循环
        if mod(i,NSamples)==1 & mod(j,NSamples)==1%采用间隔 
           plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点
        end
    end
end
title('reconstruction with the fine regular grid');%显示标题

%%
%coarse regular grid
NSamples      = 8;
Im            = double(images(:,:,1));%R通道图像
image3(:,:,1) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image3(:,:,2) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image3(:,:,3) = func_SOMP_tops2(Im,Num_Iter,NSamples,R_size,C_size);%SOMP算法调用

subplot(223);
imshow(uint8(image3));
hold on;
%显示白色点
for i = 1:R_size
    for j = 1:C_size
        if mod(i,NSamples)==1 & mod(j,NSamples)==1%采用间隔 
           plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点
        end
    end
end
title('reconstruction with the coarse regular grid with Fourier interpolation');%显示标题



%%
%random grid
%下面的语句是:随机采用网格点设置
tmps     = rand(R_size,C_size);
Nsamples = zeros(R_size,C_size);
for i = 1:R_size
    for j = 1:C_size
        if tmps(i,j)>0.985
           Nsamples(i,j)=1; 
        else
           Nsamples(i,j)=0;  
        end
    end
end

Im            = double(images(:,:,1));%R通道图像
image4(:,:,1) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,2));%G通道图像
image4(:,:,2) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用
Im            = double(images(:,:,3));%B通道图像
image4(:,:,3) = func_SOMP_tops3(Im,Num_Iter,Nsamples,R_size,C_size);%SOMP算法调用

subplot(224);
imshow(uint8(image4));
hold on;
%显示白色点
for i = 1:R_size
    for j = 1:C_size
        if Nsamples(i,j)==1%采用间隔 
           plot(i,j,'wo','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','w','MarkerSize',5);%画白点
           hold on;
        end
    end
end
title('reconstruction with the fine regular grid');%显示标题
03_007m

4.算法理论概述

      平板脉冲响应(Pulse Response)是通信和雷达等领域中的重要参数,它描述了信号在空间中传播的特性。在现实应用中,获取完整的脉冲响应通常是耗时且昂贵的。基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值是一种用于从有限采样数据中估计完整脉冲响应的方法。

       亚奈奎斯特采样是一种在信号频率谱存在带限特性时,使用低于奈奎斯特定理的采样率进行采样的方法。对于带限信号,采样频率可以低于信号最高频率的两倍。这种采样方法可以节省存储和传输开销。

       亚奈奎斯特采样是一种在信号频率谱存在带限特性时,使用低于奈奎斯特定理的采样率进行采样的方法。对于带限信号,采样频率可以低于信号最高频率的两倍。这种采样方法可以节省存储和传输开销。

       SOMP(Sparse Orthogonal Matching Pursuit)算法是一种用于稀疏信号重构的迭代算法。它通过迭代地选择与残差最相关的稀疏原子(例如,在信号表示中的原子函数)来逼近原始信号。SOMP算法能够高效地从少量观测数据中恢复稀疏信号。

SOMP算法的实现过程包括以下步骤:

  1. 初始化残差为观测数据。
  2. 在每一步中,选择与当前残差最相关的稀疏原子,并添加到信号表示中。
  3. 更新残差,即将观测数据减去已选择的原子的贡献。
  4. 重复步骤2和3,直到达到预定的稀疏度或误差要求。

      基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值将这两种方法结合起来,用于从有限采样数据中估计完整的平板脉冲响应。首先,使用亚奈奎斯特采样获取脉冲响应的有限采样数据。然后,应用SOMP算法来从这些有限采样数据中重构脉冲响应。

      基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值的实现过程如下:

  1. 使用亚奈奎斯特采样获取平板脉冲响应的有限采样数据。
  2. 初始化残差为观测数据。
  3. 在每一步中,选择与当前残差最相关的脉冲响应原子,并添加到重构的脉冲响应中。
  4. 更新残差,即将观测数据减去已选择的原子的贡献。
  5. 重复步骤3和4,直到达到预定的稀疏度或误差要求。
  6. 得到重构的平板脉冲响应。

       基于亚奈奎斯特采样和SOMP算法的平板脉冲响应空间插值在雷达、无线通信等领域具有广泛应用。通过从有限采样数据中恢复完整的脉冲响应,可以提高系统性能和信号处理效率。

 

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/66766.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ApplicationContextInitializer

目录 在何处执行?何时初始化?自己写一个ApplicationContextInitializer 那这个类的设计具体有什么作用呢??1. DelegatingApplicationContextInitializer2. SharedMetadataReaderFactoryContextInitializer3. ContextIdApplication…

灰度均衡变换之c++实现(qt + 不调包)

1.基本原理 灰度均衡是以累计分布函数变换为基础的直方图修正法,它可以产生一副灰度级分布概率均匀的图像。也就是说,经过灰度均衡后的图像在没一级灰度上像素点的数量相差不大。公式见下图,为灰度值为x的像素点的个数,n为总像素点…

方法区——元空间概述

方法区 不同版本具体实现 标准层面:方法区(Method Area)具体实现层面: ≤JDK1.6 永久代JDK1.7 永久代仍然存在,但是已经开始提出:去永久代≥JDK1.8元空间(Meta Space) 永久代概念辨…

Linux6.34 Kubernetes yaml文件详解

文章目录 计算机系统5G云计算第三章 LINUX Kubernetes yaml文件详解一、yaml文件概述1.查看 api 资源版本标签2.写一个yaml文件demo 计算机系统 5G云计算 第三章 LINUX Kubernetes yaml文件详解 一、yaml文件概述 Kubernetes 支持 YAML 和 JSON 格式管理资源对象 JSON 格式…

【网站搭建】开源社区Flarum搭建记录

环境 服务器系统:腾讯云 OpenCloudOS 宝塔版本:免费版8.0.1 Nginx:1.24.0 MySQL:5.7.42 PHP:8.1.21 萌狼蓝天 2023年8月7日 PHP设置 1.安装扩展:flieinfo、opcache、exif 2.解除禁用函数:putenv…

安卓:LitePal操作数据库

目录 一、LitePal介绍 常用方法: 1、插入数据: 2、更新数据: 3、删除数据: 4、查询数据: 二、LitePal的基本用法: 1、集成LitePal: 2、创建LitePal配置文件: 3、创建模型类…

【图像分类】CNN + Transformer 结合系列.4

介绍两篇利用Transformer做图像分类的论文:CoAtNet(NeurIPS2021),ConvMixer(ICLR2022)。CoAtNet结合CNN和Transformer的优点进行改进,ConvMixer则patch的角度来说明划分patch有助于分类。 CoAtN…

音视频基础:分辨率、码率、帧率之间关系

基础 人类视觉系统 分辨率 像素: 是指由图像的小方格组成的,这些小方块都有一个明确的位置和被分配的色彩数值,小方格颜色和位置就决定该图像所呈现出来的样子;可以将像素视为整个图像中不可分割的单位或者是元素;像素…

RabbitMQ 发布确认机制

发布确认模式是避免消息由生产者到RabbitMQ消息丢失的一种手段 发布确认模式 原理说明实现方式开启confirm(确认)模式阻塞确认异步确认 总结 原理说明 生产者通过调用channel.confirmSelect方法将信道设置为confirm模式,之后RabbitMQ会返回Co…

vuejs 设计与实现 - 双端diff算法

我们介绍了简单 Diff 算法的实现原理。简单 Diff 算法利用虚拟节点的 key 属性,尽可能地复用 DOM元素,并通过移动 DOM的方式来完成更新,从而减少不断地创建和销毁 DOM 元素带来的性能开销。但是,简单 Diff 算法仍然存在很多缺陷&a…

并发三大特性和JMM

一、并发三大特性 1、原子性 一个或多个操作,要么全部执行且在执行过程中不被任何因素打断,要么全部不执行。在Java中,对基本数据类型的读取和赋值操作是原子性操作(64位处理器)。不采取任何的原子性保障措施的自增操…

c++11 标准模板(STL)(std::basic_fstream)(三)

定义于头文件 <fstream> template< class CharT, class Traits std::char_traits<CharT> > class basic_fstream : public std::basic_iostream<CharT, Traits> 类模板 basic_fstream 实现基于文件的流上的高层输入/输出。它将 std::basic_i…

Cadvisor+InfluxDB+Grafan+Prometheus(详解)

目录 一、CadvisorInfluxDBGrafan案例概述 &#xff08;一&#xff09;Cadvisor Cadvisor 产品特点&#xff1a; &#xff08;二&#xff09;InfluxDB InfluxDB应用场景&#xff1a; InfluxDB主要功能&#xff1a; InfluxDB主要特点&#xff1a; &#xff08;三&#…

MyCat配置文件schema.xml讲解

1.MyCat配置 1.1 schema标签 如果checkSQLschema配置的为false&#xff0c;那么执行DB01.TB_ORDER时就会报错&#xff0c;必须用use切换逻辑库以后才能进行查询。 sqlMaxLimit如果未指定limit进行查询&#xff0c;列表查询模式默认为100,最多只查询100条。因为用mycat后默认数…

linux自定义网络访问规则

1.更改防火墙默认区域为trusted firewall-cmd --set-default-zonetrusted 2.新建一个zone&#xff0c;将想要访问本机80端口的ip&#xff0c;如&#xff1a;192.168.3.99 &#xff0c;添加的这个zone中&#xff0c;同时在这个zone中放行80端口。 firewall-cmd --permanent --ne…

SEO搜索引擎优化

目录 场景 内部业务To B (Business-to-Business&#xff0c;B2B)需要降低SEO&#xff0c;反爬 客户业务To C (Business-to-Consumer&#xff0c;B2C)需要提高SEO TDK优化 Title&#xff08;标题&#xff09; Description&#xff08;描述&#xff09; Keywords&#xff…

windows 安装免费3用户ccproxy ubuntu 代理上网

Windows 上进行安装 ubuntu 上进行设置 方法一 (临时的手段) 如果仅仅是暂时需要通过http代理使用apt-get&#xff0c;您可以使用这种方式。 在使用apt-get之前&#xff0c;在终端中输入以下命令&#xff08;根据您的实际情况替换yourproxyaddress和proxyport&#xff09;。 终…

布谷鸟配音:一站式配音软件

这是一款智能语音合成软件&#xff0c;可以快速将文字转换成语音&#xff0c;拥有多种真人模拟发音&#xff0c;可以选择不同男声、女声、童声&#xff0c;以及四川话、粤语等中文方言和外语配音&#xff0c;并且可对语速、语调、节奏、数字读法、多音字、背景音等进行全方位设…

初识Container

1. 什么是Container&#xff08;容器&#xff09; 要有Container首先要有Image&#xff0c;也就是说Container是通过image创建的。 Container是在原先的Image之上新加的一层&#xff0c;称作Container layer&#xff0c;这一层是可读可写的&#xff08;Image是只读的&#xff0…

Mybatis-Plus使用updateById()、update()将字段更新为null

文章目录 一、问题背景二、问题原因三、解决方案1. 设置全局的field-strategy2. 对某个字段设置单独的field-strategy3. 使用UpdateWrapper方式更新&#xff08;推荐使用&#xff09; 本文主要介绍了Mybatis-Plus使用updateById()、update()将字段更新为null&#xff0c;文中通…