FPGA高端项目:FPGA解码MIPI视频+图像缩放+视频拼接,基于MIPI CSI-2 RX Subsystem架构实现,提供4套工程源码和技术支持

目录

  • 1、前言
    • 工程概述
    • 免责声明
  • 2、相关方案推荐
    • 我这里已有的 MIPI 编解码方案
    • 本方案在Xilinx Artix7-35T上解码MIPI视频的应用
    • 本方案在Xilinx Artix7-100T上解码MIPI视频的应用
    • 本方案在Xilinx Kintex7上解码MIPI视频的应用
    • 本方案在Xilinx Zynq7000上解码MIPI视频的应用
    • 本方案在Xilinx Zynq UltraScale上解码MIPI视频的应用
    • 本方案的图像缩放应用
    • 纯VHDL代码解码ov5640-MIPI视频方案
    • Video Processing Subsystem图像缩放应用
    • Video Mixer视频拼接应用
  • 3、详细设计方案
    • 设计原理框图
    • OV5640及其配置
    • MIPI-DPHY硬件权电阻方案
    • MIPI CSI-2 RX Subsystem
    • Sensor Demosaic图像格式转换
    • Gammer LUT伽马校正
    • Video Processing Subsystem 介绍
    • VDMA图像缓存
    • Video Mixer介绍
    • AXI4-Stream toVideo Out
    • HDMI输出
    • 工程源码架构
  • 4、vivado工程1详解:Kintex7-35T版本--2路视频缩放拼接
  • 5、vivado工程2详解:Kintex7-35T版本--4路视频缩放拼接
  • 6、vivado工程3详解:Zynq7020版本--2路视频缩放拼接
  • 7、vivado工程4详解:Zynq7020版本--4路视频缩放拼接
  • 8、工程移植说明
    • vivado版本不一致处理
    • FPGA型号不一致处理
    • 其他注意事项
  • 9、上板调试验证
    • 准备工作
    • 输出视频演示
  • 14、福利:工程代码的获取

FPGA高端项目:FPGA解码MIPI视频+图像缩放+视频拼接,基于MIPI CSI-2 RX Subsystem架构实现,提供4套工程源码和技术支持

1、前言

FPGA图像采集领域目前协议最复杂、技术难度最高的应该就是MIPI协议了,MIPI解码难度之高,令无数英雄竞折腰,以至于Xilinx官方不得不推出专用的IP核供开发者使用,不然太高端的操作直接吓退一大批FPGA开发者,就没人玩儿了。

工程概述

本设计基于Xilinx系列FPGA开发板,采集OV5640摄像头的2Lane MIPI视频,OV5640摄像头配置为MIPI模式,引脚经过权电阻方案后接入FPGA的HS BANK的LVDS差分IO;调用Xilinx的MIPI CSI-2 RX Subsystem IP实现MIPI的D-PHY功能,该IP由Xilinx免费提供,将MIPI视频解码后以AXIS视频流格式输出;再调用Xilinx的Sensor Demosaic IP实现RAM转RGB功能; 再调用Xilinx的Gammer LUT IP实现伽马校正功能; 再调用Xilinx官方的Video Processing Subsystem IP核将输入视频进行图像缩放操作,该操作通过Zynq软核SDK软件配置,其本质为通过AXI_Lite 做寄存器配置;再调用Xilinx的VDMA IP实现图像三帧缓存功能;再调用Xilinx的Video Mixer IP实现多路视频拼接操作,该操作通过Zynq软核SDK软件配置,其本质为通过AXI_Lite 做寄存器配置;再调用Xilinx的Video Timing Controller和AXI4-Stream toVideo Out IP实现视频流从AXI4-Stream到VGA时序的转换;最后调用纯verilog代码实现的RGB转HDMI模块将视频以HDMI接口输出显示器显示;针对目前市面上主流的FPGA,本Xilinx系列FPGA解码OV5640-MIPI视频方案一共移植了4套工程源码,详情如下:
在这里插入图片描述
这里说明一下提供的4套工程源码的作用和价值,如下:

工程源码1

FPGA开发板型号为Xilinx–Kintex7–xc7k325tffg900-2,输入视频为OV5640摄像头,MIPI模式,2 Line,RAW10输出像素,分辨率配置为1280x720@60Hz;经过MIPI CSI-2 RX Subsystem实现MIPI解码并输出AXI4-Stream视频流,再经过Sensor Demosaic实现Bayer转RGB,再经过Gammer LUT实现伽马校正,然后将视频复制为2路,以模拟2路视频源;再经过Video Processing Subsystem 实现图像缩放,将原始视频从1280x720缩放为960x540;再经过VDMA实现视频三帧缓存,图像缓存介质为DDR3,再经过Video Mixer IP实现2路视频拼接;最后视频以HDMI接口输出,输出分辨率为在1920x1080黑色背景下叠加2路缩放拼接后的视频;该方案适用于Xilinx 7系列运行MicroBlaze的FPGA;

工程源码2

FPGA开发板型号为Xilinx–Kintex7–xc7k325tffg900-2,输入视频为OV5640摄像头,MIPI模式,2 Line,RAW10输出像素,分辨率配置为1280x720@60Hz;经过MIPI CSI-2 RX Subsystem实现MIPI解码并输出AXI4-Stream视频流,再经过Sensor Demosaic实现Bayer转RGB,再经过Gammer LUT实现伽马校正,然后将视频复制为4路,以模拟4路视频源;再经过Video Processing Subsystem 实现图像缩放,将原始视频从1280x720缩放为960x540;再经过VDMA实现视频三帧缓存,图像缓存介质为DDR3,再经过Video Mixer IP实现4路视频拼接;最后视频以HDMI接口输出,输出分辨率为在1920x1080黑色背景下叠加4路缩放拼接后的视频;该方案适用于Xilinx 7系列运行MicroBlaze的FPGA;

工程源码3

FPGA开发板型号为Xilinx–Zynq7020–xc7z020clg400-2,输入视频为OV5640摄像头,MIPI模式,2 Line,RAW10输出像素,分辨率配置为1280x720@60Hz;经过MIPI CSI-2 RX Subsystem实现MIPI解码并输出AXI4-Stream视频流,再经过Sensor Demosaic实现Bayer转RGB,再经过Gammer LUT实现伽马校正,然后将视频复制为2路,以模拟2路视频源;再经过Video Processing Subsystem 实现图像缩放,将原始视频从1280x720缩放为960x540;再经过VDMA实现视频三帧缓存,图像缓存介质为DDR3,再经过Video Mixer IP实现2路视频拼接;最后视频以HDMI接口输出,输出分辨率为在1920x1080黑色背景下叠加2路缩放拼接后的视频;该方案适用于Xilinx Zynq7000系列运行Zynq的FPGA;

工程源码4

FPGA开发板型号为Xilinx–Zynq7020–xc7z020clg400-2,输入视频为OV5640摄像头,MIPI模式,2 Line,RAW10输出像素,分辨率配置为1280x720@60Hz;经过MIPI CSI-2 RX Subsystem实现MIPI解码并输出AXI4-Stream视频流,再经过Sensor Demosaic实现Bayer转RGB,再经过Gammer LUT实现伽马校正,然后将视频复制为4路,以模拟4路视频源;再经过Video Processing Subsystem 实现图像缩放,将原始视频从1280x720缩放为960x540;再经过VDMA实现视频三帧缓存,图像缓存介质为DDR3,再经过Video Mixer IP实现4路视频拼接;最后视频以HDMI接口输出,输出分辨率为在1920x1080黑色背景下叠加4路缩放拼接后的视频;该方案适用于Xilinx Zynq7000系列运行Zynq的FPGA;

本文详细描述了Xilinx 系列FPGA解码MIPI视频+图像缩放+视频拼接的设计方案,工程代码编译通过后上板调试验证,可直接项目移植,适用于在校学生做毕业设计、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的数字成像和图像传输领域;整个工程调用Zynq软核做IP的配置,Zynq的配置在Vitis SDK里以C语言软件代码的形式运行,所以整个工程包括FPGA逻辑设计和Vitis SDK软件设计两部分,需要具备FPGA和嵌入式C语言的综合能力,不适合初学者或者小白;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;

关于MIPI协议,请自行搜索,csdn就有很多大佬讲得很详细,我就不多写这块了;

免责声明

本工程及其源码即有自己写的一部分,也有网络公开渠道获取的一部分(包括CSDN、Xilinx官网、Altera官网以及其他开源免费获取渠道等等),若大佬们觉得有所冒犯,请私信批评教育;部分模块源码转载自上述网络,版权归原作者所有,如有侵权请联系我们删除;基于此,本工程及其源码仅限于读者或粉丝个人学习和研究,禁止用于商业用途,若由于读者或粉丝自身原因用于商业用途所导致的法律问题,与本博客及博主无关,请谨慎使用。。。

2、相关方案推荐

我这里已有的 MIPI 编解码方案

我这里目前已有丰富的基于FPGA的MIPI编解码方案,主要是MIPI解码的,既有纯vhdl实现的MIPI解码,也有调用Xilinx官方IP实现的MIPI解码,既有2line的MIPI解码,也有4line的MIPI解码,既有4K分辨率的MIPI解码,也有小到720P分辨率的MIPI解码,既有基于Xilinx平台FPGA的MIPI解码也有基于Altera平台FPGA的MIPI解码,还有基于Lattice平台FPGA的MIPI解码,后续还将继续推出更过国产FPGA的MIPI解码方案,毕竟目前国产化方案才是未来主流,后续也将推出更多MIPI编码的DSI方案,努力将FPGA的MIPI编解码方案做成白菜价。。。
基于此,我专门建了一个MIPI编解码的专栏,并将MIPI编解码的博客都放到了专栏里整理,对FPGA编解码MIPI有项目需求或学习兴趣的兄弟可以去我的专栏看看,专栏地址如下:
点击直接前往专栏

本方案在Xilinx Artix7-35T上解码MIPI视频的应用

本方案适应于Xilinx系列FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7000、Zynq UltraScale等平台共计16套工程源码,本文讲述的是在Zynq7000中端FPGA上的应用,想要直接应用于Xilinx Artix7-35T 系列FPGA上的ov5640-MIPI视频解码应用的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在Xilinx Artix7-100T上解码MIPI视频的应用

本方案适应于Xilinx系列FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7000、Zynq UltraScale等平台共计16套工程源码,本文讲述的是在Zynq7000中端FPGA上的应用,想要直接应用于Xilinx Artix7-100T 系列FPGA上的ov5640-MIPI视频解码应用的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在Xilinx Kintex7上解码MIPI视频的应用

本方案适应于Xilinx系列FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7000、Zynq UltraScale等平台共计16套工程源码,本文讲述的是在Artix7-100T低端FPGA上的应用,想要直接应用于Xilinx Kintex7系列FPGA上的ov5640-MIPI视频解码应用的读者,可以参考我之前写得博客,以下是博客地址:
点击直接前往

本方案在Xilinx Zynq7000上解码MIPI视频的应用

本方案适应于Xilinx系列FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7000、Zynq UltraScale等平台共计16套工程源码,本文讲述的是在Kintex7中端FPGA上的应用,想要直接应用于Xilinx Zynq7000系列FPGA上的ov5640-MIPI视频解码应用的读者,可以参考我之前写得博客,里面包括了Zynq7020、Zynq7030、Zynq7035、Zynq7045、Zynq7100等平台;以下是博客地址:
点击直接前往

本方案在Xilinx Zynq UltraScale上解码MIPI视频的应用

本方案适应于Xilinx系列FPGA平台,针对目前市面上主流的FPGA,本博将本方案分别移植到了Xilinx 的Artix7、Kintex7、Zynq7000、Zynq UltraScale等平台共计16套工程源码,本文讲述的是在Artix7-100T低端FPGA上的应用,想要直接应用于Xilinx Zynq UltraScale系列FPGA上的ov5640-MIPI视频解码应用的读者,可以参考我之前写得博客,里面包括了Zynq UltraScale XCZU2CG、Zynq UltraScale XCZU3EG、Zynq UltraScale XCZU4EV、Zynq UltraScale XCZU7EV、Zynq UltraScale XCZU9EG等平台;以下是博客地址:
点击直接前往

本方案的图像缩放应用

基于MIPI CSI-2 RX Subsystem架构实现的MIPI视频解码,还可以加上图像缩放应用,使得其应用范围更广,之前写过一片啊博客;以下是博客地址:
点击直接前往

纯VHDL代码解码ov5640-MIPI视频方案

与上述基于MIPI CSI-2 RX Subsystem方案不同,本博也提供基于纯VHDL代码解码ov5640-MIPI视频的方案,该方案的区别与优势在于可以看到VHDL源码而非单纯的IP,能看到源码的意思就是你可以任意修改源码以适配自己的项目,其意义与价值无需多言,该方案目前已在Xilinx Zynq7020上移植成功,共有两套工程源码,一套是单路ov5640-MIPI视频解码后HDMI输出;另一套是4路ov5640-MIPI视频解码经缩放拼接后HDMI 4分屏输出;感兴趣的可以参考我之前的博客;
单路MIPI解码输出博客地址如下:
点击直接前往
4路MIPI解码缩放拼接输出博客地址如下:
点击直接前往

Video Processing Subsystem图像缩放应用

本设计采用Vivado2022.2版本设计,该版本属于高版本,不能使用HLS2019.2及其以下版本生成的HLS IP,所以也就不能使用本博客自研的HLS图像缩放IP,只能使用Video Processing Subsystem,关于Video Processing Subsystem,之前写过一篇博客,可以参考学习,以下是博客地址:
点击直接前往

Video Mixer视频拼接应用

关于Video Mixer,之前写过一篇博客,可以参考学习,以下是博客地址:
点击直接前往

3、详细设计方案

设计原理框图

设计原理框图如下:
在这里插入图片描述

OV5640及其配置

输入视频采用廉价的OV5640摄像头模组,配置为MIPI模式,2 Lane,数据格式为RAW10,线速率为1000Mbps,视频分辨率为1280X720,一个时钟一个像素,OV5640需要SCCB总线配置才能运行,该总线等价于I2C总线,纯FPGA的工程调用AXI-GPIO模拟I2C,利用Vitis软件配置OV5640;Zynq的工程使用PS端自带的i2c片内外资源,利用Vitis软件配置OV5640,配置部分代码有C语言实现,具体参考Vitis程序;

MIPI-DPHY硬件权电阻方案

使用Xilinx官方推荐的权电阻硬件方案将输入的差分MIPI对恢复HS和PL,原理图部分截图如下:
在这里插入图片描述
注意:权电阻方案只在低速率的MIPI模式下可用,高速率的MIPI请用专用芯片实现,比如MC20001,MC系列这种方案可以支持到2Gbps/Lane速率以上,只要FPGA的IO速率够用;

MIPI CSI-2 RX Subsystem

调用Xilinx的MIPI CSI-2 RX Subsystem IP实现MIPI的D-PHY功能,该IP由Xilinx免费提供,将MIPI视频解码后以AXIS视频流格式输出;该IP不需要额外的SDK软件配置,调用和配置如下:
在这里插入图片描述
在这里插入图片描述
由于调用了Xilinx的MIPI CSI-2 RX Subsystem IP核,所以性能上就取决于你的FPGA型号,理论上FPGA越高端,支持的IO线速率或者GT高速接口线速率就越高,就能跑速率更高的MIPI视频;
该IP适应性极强,支持的MIPI相机性能参数如下:
在这里插入图片描述
在这里插入图片描述
并且,在越高端的FPGA型号上,该IP支持的高端性能也越多;
由于调用了Xilinx的MIPI CSI-2 RX Subsystem IP核,NIPI视频解码的稳定性很好,且使用及其简单,缺点是看不到源码,出了问题后不好排查,只能在输入输出接口添加ila进行逐级追踪;
本方案使用的FPGA型号为Xilinx zynq 7000系列,属于中端FPGA的MIPI解码应用,再小型的Artix7-35T或者Spartan7、Spartan6等就已经不能使用MIPI CSI-2 RX Subsystem了;

以工程源码3为例,MIPI CSI-2 RX Subsystem占用逻辑资源如下:
在这里插入图片描述

Sensor Demosaic图像格式转换

调用Xilinx的Sensor Demosaic IP实现RAM转RGB功能,该IP通过Vitis的C代码软件配置,Sensor Demosaic调用和C代码软件配置代码截图如下:
在这里插入图片描述
在这里插入图片描述

Gammer LUT伽马校正

调用Xilinx的Gammer LUT IP实现伽马校正功能,该IP通过Vitis的C代码软件配置,Gammer LUT调用和C代码软件配置代码截图如下:
在这里插入图片描述
在这里插入图片描述

Video Processing Subsystem 介绍

由于工程所用到的IP都是常用IP,所以这里重点介绍一下Video Processing Subsystem;
Video Processing Subsystem有缩放、去隔行、颜色空间转换等功能,这里仅使用图像缩放功能;其特点如下:
优点1:适用于Xilinx所有系列的FPGA器件和所有的Vivado版本;
优点2:支持最大分辨率:8K,即可以处理高达8K的视频;
优点3:输入视频格式:AXI4-Stream,方便对接Xilinx图像处理套路的相关IP;
优点4:输出视频格式:AXI4-Stream,方便对接Xilinx图像处理套路的相关IP;
优点5:模块占用的FPGA逻辑资源更小,相比于自己写的HLS图像缩放而言,官方的Video Processing Subsystem资源占用大约减小30%左右,且更高效:
注意!!!!
注意!!!!
注意!!!!
注意!!!!
缺点1:需要SDK软件配置,其本质为通过AXI_Lite 做寄存器配置,设计难度现对复杂,对新手小白不太友好;
缺点2:Xilinx官方提供的Video Processing Subsystem IAP并不能实现任意尺寸的图像缩放,只能在IAP中视频分辨率查找表范围内进行缩放操作,如果想要实现自定义任意尺寸缩放,需要修改Xilinx官方提供的API源代码,对新手小白极其友好,有此类需求的朋友可以联系博主,提供私人定制服务,也就是我帮你修改Xilinx官方提供的API源代码,以实现自定义任意尺寸缩放操作;

Video Processing Subsystem逻辑资源如下,请谨慎评估你的FPGA资源情况;
在这里插入图片描述
Video Processing Subsystem IP配置如下:这里配置为双线性插值图像缩放算法;
在这里插入图片描述
在这里插入图片描述

VDMA图像缓存

调用Xilinx的VDMA IP实现图像三帧缓存功能,该IP通过Vitis的C代码软件配置;VDMA调用和C代码软件配置代码截图如下:
在这里插入图片描述

Video Mixer介绍

这里重点介绍一下Video Mixer IP;
支持最大分辨率:8K,即可以处理高达8K的视频;
支持最多16层视频拼接叠加,即最多可拼接16路视频;
输入视频格式:AXI4-Stream;
输出视频格式:AXI4-Stream;
需要SDK软件配置,其本质为通过AXI_Lite 做寄存器配置;
提供自定义的配置API,通过调用该库函数即可轻松使用,具体参考SDK代码;
模块占用的FPGA逻辑资源更小,相比于自己写的HLS视频拼接而言,官方的Video Mixer资源占用大约减小30%左右,且更高效:
以工程源码3的2路视频拼接为例,Video Mixer逻辑资源如下,请谨慎评估你的FPGA资源情况;
在这里插入图片描述

AXI4-Stream toVideo Out

再调用Xilinx的Video Timing Controller和AXI4-Stream toVideo Out IP实现视频流从AXI4-Stream到VGA时序的转换;Video Timing Controller配置为1920x1080@60Hz,输出分辨率为在1920x1080黑色背景下叠加的2路或4路缩放拼接后的视频;这两个IP不需要软件配置;Video Timing Controller和AXI4-Stream toVideo Out调用截图如下:
在这里插入图片描述

HDMI输出

最后用纯verilog实现的HDMI发送模块将视频输出显示器显示,该IP最大输出分辨率只支持1920*1080@60Hz;IP调用截图如下:
在这里插入图片描述

工程源码架构

该工程由vivado Block Design设计和SDK软件设计构成;
vivado Block Design设计主要是MIPI解码、ISP处理、图像缓存、图像输出等逻辑部分设计;
SDK软件设计主要是对Block Design设计中使用到的各种IP进行初始化和配置;
以工程源码3的2路视频缩放拼接为例,vivado Block Design设计架构如下:
在这里插入图片描述
以工程源码3的2路视频缩放拼接为例,综合后的工程代码架构如下:
在这里插入图片描述
以工程源码3的2路视频缩放拼接为例,Vitis SDK C语言软件是为了配置FPGA调用的IP,用VItis打开即可查看,代码内容如下:
在这里插入图片描述
由于工程中用到了HLS生成的IP,Sensor Demosaic和Gammer LUT,可能会出现综合编译失败,或者警告后在Vitis SDK里找不到设备ID等情况,此时需要更改电脑系统时间或者打上官方补丁解决这件事情,具体方法参考这位大佬博文:
直接点击前往

4、vivado工程1详解:Kintex7-35T版本–2路视频缩放拼接

开发板FPGA型号:Xilinx–Kintex7–xc7k325tffg900-2;
开发环境:Vivado2022.2;
输入:OV5640摄像头–MIPI–2 Line–RAW10-1280x720@60Hz;
输出:HDMI ,分辨率1920x1080@60Hz黑色背景下叠加的缩放后的视频;
图像缩放方案:Xilinx–Video Processing Subsystem方案;
图像缩放实例:1280x720缩放为960x540;
视频拼接方案:Xilinx–Video Mixer方案;
视频拼接实例:2路视频拼接;
方案应用:Xilinx 系列FPGA解码MIPI视频+图像缩放;
工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

5、vivado工程2详解:Kintex7-35T版本–4路视频缩放拼接

开发板FPGA型号:Xilinx–Kintex7–xc7k325tffg900-2;
开发环境:Vivado2022.2;
输入:OV5640摄像头–MIPI–2 Line–RAW10-1280x720@60Hz;
输出:HDMI ,分辨率1920x1080@60Hz黑色背景下叠加的缩放后的视频;
图像缩放方案:Xilinx–Video Processing Subsystem方案;
图像缩放实例:1280x720缩放为960x540;
视频拼接方案:Xilinx–Video Mixer方案;
视频拼接实例:4路视频拼接;
方案应用:Xilinx 系列FPGA解码MIPI视频+图像缩放;
工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

6、vivado工程3详解:Zynq7020版本–2路视频缩放拼接

开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2022.2;
输入:OV5640摄像头–MIPI–2 Line–RAW10-1280x720@60Hz;
输出:HDMI ,分辨率1920x1080@60Hz黑色背景下叠加的缩放后的视频;
图像缩放方案:Xilinx–Video Processing Subsystem方案;
图像缩放实例:1280x720缩放为960x540;
视频拼接方案:Xilinx–Video Mixer方案;
视频拼接实例:2路视频拼接;
方案应用:Xilinx 系列FPGA解码MIPI视频+图像缩放;
工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

7、vivado工程4详解:Zynq7020版本–4路视频缩放拼接

开发板FPGA型号:Xilinx–Zynq7020–xc7z020clg400-2;
开发环境:Vivado2022.2;
输入:OV5640摄像头–MIPI–2 Line–RAW10-1280x720@60Hz;
输出:HDMI ,分辨率1920x1080@60Hz黑色背景下叠加的缩放后的视频;
图像缩放方案:Xilinx–Video Processing Subsystem方案;
图像缩放实例:1280x720缩放为960x540;
视频拼接方案:Xilinx–Video Mixer方案;
视频拼接实例:4路视频拼接;
方案应用:Xilinx 系列FPGA解码MIPI视频+图像缩放;
工程代码架构请参考第3章节的《工程源码架构》小节内容;
工程的资源消耗和功耗如下:
在这里插入图片描述

8、工程移植说明

vivado版本不一致处理

1:如果你的vivado版本与本工程vivado版本一致,则直接打开工程;
2:如果你的vivado版本低于本工程vivado版本,则需要打开工程后,点击文件–>另存为;但此方法并不保险,最保险的方法是将你的vivado版本升级到本工程vivado的版本或者更高版本;
在这里插入图片描述
3:如果你的vivado版本高于本工程vivado版本,解决如下:
在这里插入图片描述
打开工程后会发现IP都被锁住了,如下:
在这里插入图片描述
此时需要升级IP,操作如下:
在这里插入图片描述
在这里插入图片描述

FPGA型号不一致处理

如果你的FPGA型号与我的不一致,则需要更改FPGA型号,操作如下:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
更改FPGA型号后还需要升级IP,升级IP的方法前面已经讲述了;

其他注意事项

1:由于每个板子的DDR不一定完全一样,所以MIG IP需要根据你自己的原理图进行配置,甚至可以直接删掉我这里原工程的MIG并重新添加IP,重新配置;
2:根据你自己的原理图修改引脚约束,在xdc文件中修改即可;
3:纯FPGA移植到Zynq需要在工程中添加zynq软核;

9、上板调试验证

准备工作

需要准备的器材如下:
FPGA开发板,可以自己准备,也可以购买本博主使用的同款开发板,省事儿;
MIPI-OV5640摄像头,可以自己准备,也可以购买本博主使用的同款开发板,省事儿;
HDMI显示器;
MIPI-OV5640摄像头与开发板连接如下:
在这里插入图片描述
然后上电并下载bit测试;

输出视频演示

以工程源码3为例,2路视频缩放拼接输出如下:

FPGA解码MIPI视频+缩放+2路拼接-ov5640

以工程源码4为例,4路视频缩放拼接输出如下:

FPGA解码MIPI视频+缩放+4路拼接-ov5640

14、福利:工程代码的获取

福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:
在这里插入图片描述
此外,有很多朋友给本博主提了很多意见和建议,希望能丰富服务内容和选项,因为不同朋友的需求不一样,所以本博主还提供以下服务:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/667412.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【云原生 | 60】Docker中通过docker-compose部署kafka集群

🍁博主简介: 🏅云计算领域优质创作者 🏅2022年CSDN新星计划python赛道第一名 🏅2022年CSDN原力计划优质作者 🏅阿里云ACE认证高级工程师 🏅阿里云开发者社区专…

基于WIN2016搭建MS2016 ALWAYS ON域控故障转移群集

基于WIN2016搭建MS2016 ALWAYS ON域控故障转移群集 一、前言1、Always On简介2、AD DC域控简介 二、部署实施1、部署环境简介2、搭建流程简介3、域控服务器安装及群集节点加域3.1、安装域控,安装同时会安装DNS系统3.2、执行安装,完成后重启服务器3.3、将…

哇塞!数字营销竟是企业增长的魔法棒!

​嘿,朋友们!你们有没有发现“蚓链数字营销”就像一根神奇的魔法棒,为企业带来了超乎想象的市场影响力! 首先,蚓链数字营销能够利用互联网和数字技术,精准地定位目标用户群体。比如,通过搜索引擎…

Java整合EasyExcel实战——3(上下列相同合并单元格策略)

参考&#xff1a;https://juejin.cn/post/7322156759443095561?searchId202405262043517631094B7CCB463FDA06https://juejin.cn/post/7322156759443095561?searchId202405262043517631094B7CCB463FDA06 准备条件 依赖 <dependency><groupId>com.alibaba</gr…

数据分析案例一使用Python进行红酒与白酒数据数据分析

源码和数据集链接 以红葡萄酒为例 有两个样本: winequality-red.csv:红葡萄酒样本 winequality-white.csv:白葡萄酒样本 每个样本都有得分从1到10的质量评分&#xff0c;以及若干理化检验的结果 #理化性质字段名称1固定酸度fixed acidity2挥发性酸度volatile acidity3柠檬酸…

【SpringBoot】SpringBoot整合JWT

目录 先说token单点登录&#xff08;SSO&#xff09;简介原理单点登录的优势单点登录流程分布式单点登录方式方式一&#xff1a;session广播机制实现方式二&#xff1a;使用cookieredis实现。方式三&#xff1a;token认证 JWT数字签名JWT的作用JWT和传统Session1、无状态&#…

【Linux 网络】网络基础(三)(其他重要协议或技术:DNS、ICMP、NAT)

一、DNS&#xff08;Domain Name System&#xff09; DNS 是一整套从域名映射到 IP 的系统。 1、DNS 背景 TCP/IP 中使用 IP 地址和端口号来确定网络上的一台主机的一个程序&#xff0c;但是 IP 地址不方便记忆。于是人们发明了一种叫主机名的东西&#xff0c;是一个字符串&…

【Python】解决Python报错:AttributeError: ‘NoneType‘ object has no attribute ‘xxx‘

&#x1f9d1; 博主简介&#xff1a;阿里巴巴嵌入式技术专家&#xff0c;深耕嵌入式人工智能领域&#xff0c;具备多年的嵌入式硬件产品研发管理经验。 &#x1f4d2; 博客介绍&#xff1a;分享嵌入式开发领域的相关知识、经验、思考和感悟&#xff0c;欢迎关注。提供嵌入式方向…

开利网络参加广州数据交易所学习活动

开利网络做为南沙广州数据交易所的会员参加了由“广东三会”组织的“数据资产”相关学习活动。&#xff08;下图为开利董事长付立军先生在签到&#xff09; 学习内容提现了数字时代企业数字化转型的核之心“发掘数据价值&#xff0c;驱动高速发展”&#xff0c;交易中心组织大家…

jpom ruoyi 发布后端

添加ssh 添加标签 添加仓库 添加构建 构建 命令 APP_NAMEenterprise IMAGE_NAMEenterprise:latest APP_PORT8080 RUN_ENVjenkins cd ruoyi-admin docker stop $APP_NAME || true docker rm $APP_NAME || true docker rmi $IMAGE_NAME || true docker build -f Dockerfil…

国际物流管理系统的选择:花钱不怕,就怕花冤枉钱

现在市场上的国际物流管理系统还是非常多的&#xff0c;想在这么多类型的系统中选择一套适合自己的系统确实不是个简单的事情。 尤其是现在很多物流商其实都是比较小的国际物流商&#xff0c;很多大型的&#xff0c;过于复杂的系统并不适合这个群体。那这个群体应该怎么选择国…

智慧车站管理:提升地铁站新质生产力的策略

应用图扑自研产品 HT for Web 结合 BIM 技术&#xff0c;搭建轻量化的 WebGIS 智慧车站系统。 该系统通过整合轨道交通信息&#xff0c;实现了车站数据的多维互联与融合。提升了车站信息管理效率和运营效能&#xff0c;并优化了乘客出行体验。对构建智能、高效、环保的轨道交通…

利用博弈论改进大模型性能:MIT最新研究解读

引言 在人工智能和大模型的发展过程中&#xff0c;我们常常遇到一个有趣的现象&#xff1a;同一个问题在不同形式下可能得到不同的答案。这种不一致性不仅降低了大模型的可信度&#xff0c;也限制了其在实际应用中的效果。为了应对这一问题&#xff0c;来自MIT的研究人员提出了…

微信公众号开发(三):自动回复“你好”

上一篇做了服务器校验&#xff0c;但没有处理用户发来的消息&#xff0c;为了完成自动回复的功能&#xff0c;需要增加一些功能&#xff1a; 1、调整服务器校验函数&#xff1a; def verify_wechat(request):tokentokendatarequest.argssignaturedata.get(signature)timestamp…

安全测试用例及解析(Word原件,直接套用检测)

5 信息安全性测试用例 5.1 安全功能测试 5.1.1 标识和鉴别 5.1.2 访问控制 5.1.3 安全审计 5.1.4 数据完整性 5.1.5 数据保密性 5.1.6 软件容错 5.1.7 会话管理 5.1.8 安全漏洞 5.1.9 外部接口 5.1.10 抗抵赖 5.1.11 资源控制 5.2 应用安全漏洞扫描 5.2.1 应用安全漏洞扫描 5.3…

vim使用技巧

1&#xff0c;使用内置帮助&#xff08;built-in help&#xff09; 使用 vim 的内置帮助是一个好习惯&#xff08;虽然很多朋友更喜欢在网上搜索相关的使用方法&#xff09;。查看帮助的语法如下表格所示&#xff1a; 前缀例子说明::help :w有关 :w 命令的帮助none:help j有关…

Python—面向对象小解(5)

一、多任务介绍 1.1 进程与线程 进程是操作系统分配资源的最小单元 线程执行程序的的最小单元 线程依赖进程&#xff0c;可以获取进程的资源 一个程序执行 先要创建进程分配资源&#xff0c;然后使用线程执行任务 默认情况下一个进程中有一个线程 1.2 多任务介绍 运行多个进程…

利用二维数组的输出下列图形

利用二维数组的输出下列图形 #include <stdio.h> int main () {int i,j;char a[5][9]{{*,*,*,*,*},{ ,*,*,*,*,*},{ , ,*,*,*,*,*},{ , , ,*,*,*,*,*},{ , , , ,*,*,*,*,*}};for(j0;j<9;j) {for(i0;i<5;i) {printf("%c ",a[i][j]);} printf("\n&qu…

【C++】:模板初阶和STL简介

目录 一&#xff0c;泛型编程二&#xff0c;函数模板2.1 函数模板概念2.2 函数模板格式2.3 函数模板的原理2.4 函数模板的实例化2.5 模板参数的匹配原则 三&#xff0c;类模板3.1 类模板的定义格式3.2 类模板的实例化 四&#xff0c;STL简介&#xff08;了解&#xff09;4.1 什…

python移位操作符(左移位操作符<<、右移位操作符>>)(允许开发者对整数进行位操作,乘2或除2)(左移操作、右移操作)(位掩码操作|=)

文章目录 Python 中的移位操作符详解移位操作符简介左移位操作符 (<<)语法和使用示例代码输出 右移位操作符 (>>)语法和使用示例代码输出 移位操作符的应用场景快速乘除运算&#xff1a;使用移位操作符代替传统的乘法和除法运算&#xff0c;可以提高计算速度。位掩…