Fully Convolutional Networks for Semantic Segmentation--论文笔记

论文笔记

资料

1.代码地址

2.论文地址

https://arxiv.org/abs/1411.4038

3.数据集地址

论文摘要的翻译

卷积网络是强大的视觉模型,可以产生特征层次结构。我们表明,卷积网络本身,经过端到端,像素对像素的训练,在语义分割方面超过了最先进的技术。我们的关键见解是建立“完全卷积”网络,该网络可以接受任意大小的输入,并通过有效的推理和学习产生相应大小的输出。我们定义和详细描述了全卷积网络的空间,解释了它们在空间密集预测任务中的应用,并绘制了与先前模型的连接。我们将当代分类网络(AlexNet , VGG网络和GoogLeNet)改编为全卷积网络,并通过微调将其学习到的表征转移到分割任务中。然后,我们定义了一种新的架构,该架构将来自深层粗糙层的语义信息与来自浅层精细层的外观信息相结合,以产生准确而详细的分割。我们的全卷积网络实现了PASCAL VOC(相对于2012年的62.2%平均IU提高了20%)、NYUDv2和SIFT Flow的最先进分割,而对典型图像的推理时间不到五分之一秒。

1背景

从粗糙到精细推理的关键一步自然是对每个像素进行预测。先前的方法使用卷积神经网络进行语义分割,其中每个像素都用其封闭对象或区域的类别进行标记,但该工作解决了缺点。
该方法具有渐近性和绝对性两方面的有效性,避免了其他工作中的复杂性。Patchwise训练很常见,但缺乏全卷积训练的效率。我们的方法没有利用预处理和后处理的复杂性,包括超像素,建议,或随机字段或局部分类器的事后细化[8,16]。我们的模型将最近在分类方面的成功转移到密集预测上,将分类网络重新解释为完全卷积的,并从其学习到的表示中进行微调。相比之下,以前的作品应用了没有监督预训练的小convnets。
语义分割面临语义和位置之间固有的紧张关系:全局信息解决什么问题,而局部信息解决哪里问题。=

2论文的创新点

  • 建立完全卷积网络,该网络可以接受任意大小的输入,并通过有效的推理和学习产生相应大小的输出。
  • 定义了一种新的架构,该架构将来自深层粗糙层的语义信息与来自浅层精细层的外观信息相结合,以产生准确而详细的分割。

3 论文方法的概述

convnet中的每一层数据是一个大小为 h × w × d h × w × d h×w×d的三维数组,其中 h 和 w h和w hw是空间维度, d d d是特征或通道维度。第一层是图像,像素大小为 h × w h × w h×w,有 d d d个颜色通道。更高层的位置对应于它们在图像中路径连接的位置,这些位置被称为它们的接受野。

3.1 Adapting classifiers for dense prediction

典型的识别网络,包括LeNet、AlexNet及其后继者,表面上采用固定大小的输入,并产生非空间输出。这些网的完全连接层具有固定的尺寸,并且抛弃了空间坐标。完全连接层也可以被视为卷积,其卷积核覆盖了整个输入区域。这样做将它们转换成完全卷积的网络,可以接受任何大小的输入和输出分类图。这一转变如图2所示
在这里插入图片描述
AlexNet示例中对应的反向时间为单张图像2.4 ms,全卷积10 × 10输出映射37 ms,导致类似于正向传递的加速。这种密集的反向传播如图1所示。

在这里插入图片描述

3.2Shift-and-stitch is filter rarefaction

输入移位和输出交错是OverFeat引入的一种技巧,可以在没有插值的情况下从粗输出中产生密集预测。如果输出按f的系数下采样,则输入(通过左和上填充)向右移动 x x x个像素,向下移动y个像素,对于每个 ( x , y ) ∈ { 0 , … , f − 1 } × { 0 , … , f − 1 } (x, y)∈\{0,…, f−1\}×\{0,…, f−1\} (x,y){0f1}×{0f1} f 2 f^2 f2个输入都通过convnet运行,输出是交错的,这样预测就与它们的接受域中心的像素相对应

只改变滤波器和convnet的层步长可以产生与这种移位和缝合技巧相同的输出。考虑一个输入步长为 s s s的层(卷积或池化),以及一个过滤器权重为 f i j f_{ij} fij的卷积层。将下层的输入步幅设置为1,将其输出采样5倍,就像shift-and-stitch一样。然而,将原始滤波器与上采样输出进行卷积不会产生与技巧相同的结果,因为原始滤波器只看到其(现在上采样)输入的减少部分。为了重现这个技巧,将滤波放大为 f i j ′ = { f i / s , j / s if  s  divides both  i  and  j ; 0 otherwise , \left.f_{ij}^{\prime}=\left\{\begin{array}{ll}f_{i/s,j/s} & \text{if }s\text{ divides both }i\text{ and }j;\\ 0 & \text{otherwise},\end{array}\right.\right. fij={fi/s,j/s0if s divides both i and j;otherwise,再现该技巧的完整净输出需要一层一层地重复这个滤波器放大,直到所有的子采样被移除。
在网络中简单地减少子采样是一种权衡:过滤器可以看到更精细的信息,但接受野更小,计算时间更长。我们已经看到,移位和缝合技巧是另一种权衡:在不减少过滤器的接受野大小的情况下,输出变得更密集,但过滤器被禁止以比原始设计更精细的规模访问信息。

33 上采样后向卷积

从某种意义上说,因子 f f f的上采样是与 1 / f 1/f 1/f的分数阶输入步长的卷积。只要 f f f是积分的,那么上采样的自然方法就是输出步长为 f f f的反卷积。因此,通过像素损失的反向传播,在网络中进行端到端学习的上采样。

3.4. Patchwise training is loss sampling

在随机优化中,梯度计算是由训练分布驱动的。拼接训练和全卷积训练都可以产生任何分布,尽管它们的相对计算效率取决于重叠和小批量大小。==全图像全卷积训练与patch - wise训练相同,其中每批训练由图像(或图像集合)损失以下的单元的所有接受域野组成。==虽然这比对补丁进行统一采样更有效,但它减少了可能批次的数量。然而,图像中随机选择的补丁可以简单地恢复。将损失限制为其空间项的随机抽样子集(或者,等效地在输出和损失之间应用将补丁从梯度计算中排除
如果保留的patch仍然有明显的重叠,全卷积计算仍然会加快训练速度。如果梯度累积在多个反向通道上,批次可以包括来自多个图像的补丁patch - wise训练中的采样可以纠正类不平衡,减轻密集patch的空间相关性。在全卷积训练中,也可以通过加权损失来实现类平衡,并且可以使用损失采样来解决空间相关性

4 论文实验

4.1 FCN

定义了一种新的全卷积网络(FCN)用于分割,它结合了特征层次结构的层并改进了输出的空间精度。参见图3。在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/666680.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CI/CD:持续集成/持续部署

1. 安装docker、docker-compose # 安装Docker yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo sed -i sdownload.docker.commirrors.aliyun.com/docker-ce /…

【SpringBoot】JWT+Token之Token自动续期

目录 回顾一下JWT基于JWT的认证流程安全性性能一次性 Token过期影响解决智障思路分析 token定时检查续期思路分析大致代码问题 双token【重点】思路分析补充微信网页授权方案 实现1.依赖2.配置3.拦截器及配置4.其他类5.token映射类6.jwt工具类7.controller类8.测试 总结双token…

HackTheBox-Machines--Bashed

Bashed 测试过程 1 信息收集 NMAP 80 端口 目录扫描 http://10.129.155.171/dev/phpbash.min.php http://10.129.155.171/dev/phpbash.php 半交互式 shell 转向 交互式shell python -c import socket,subprocess,os;ssocket.socket(socket.AF_INET,socket.SOCK_STREAM);s.co…

模型 FABE(特性 优势 好处 证据)法则

说明:系列文章 分享 模型,了解更多👉 模型_思维模型目录。特性、优势、好处、证据,一气呵成。 1 FABE法则的应用 1.1 FABE法则营销商用跑步机 一家高端健身器材公司的销售代表正在向一家新开的健身房推销他们的商用跑步机。以下…

腾讯元宝眼中的我,竟是一个变现20w的AI博主!

文章首发于公众号:X小鹿AI副业 大家好,我是程序员X小鹿,前互联网大厂程序员,自由职业2年,也一名 AIGC 爱好者,持续分享更多前沿的「AI 工具」和「AI副业玩法」,欢迎一起交流~ 昨天(5…

工厂模式详情

一.介绍工厂模式的用途与特点 工厂方法模式是一种创建型设计模式, 其在父类中提供一个创建对象的方法, 允许子类决定实例化对象的类型。定义工厂方法模式(Fatory Method Pattern)是指定义一个创建对象的接口,但让实现这个接口的类来决定实例…

FasterRCNN入门案例水稻图像目标检测新手友好入门案例

目录 依赖环境 代码概述 引用库 读取数据指定目录 数据集划分 数据集加载Dataset类 特征增强处理 预训练模型定义 评估指标定义 实例化训练集和测试集 设置硬件调取一个batch 可视化 ​编辑 激活选定硬件,初始化损失函数参数 模型训练 模型测试和验…

61. UE5 RPG 实现敌人近战攻击技能和转向攻击

在前面,我们实现了敌人的AI系统,敌人可以根据自身的职业进行匹配对应的攻击方式。比如近战战士会靠近目标后进行攻击然后躲避目标的攻击接着进行攻击。我们实现了敌人的AI行为,但是现在还没有实现需要释放的技能,接下来&#xff0…

让ChatGPT成为自己的旅游顾问

不积跬步,无以至千里;不积小流,无以成江海。 大家好,我是闲鹤,公众号 xxh_zone,十多年开发、架构经验,先后在华为、迅雷服役过,也在高校从事教学3年;目前已创业了7年多&a…

桃金娘T2T基因组-文献精读17

Gap-free genome assembly and comparative analysis reveal the evolution and anthocyanin accumulation mechanism of Rhodomyrtus tomentosa 无缺口基因组组装及比较分析揭示了桃金娘的进化和花青素积累机制 摘要 桃金娘(Rhodomyrtus tomentosa)是…

安装Kubernetes v3 ----以docker的方式部署

以docker的方式部署 docker run -d \ --restartunless-stopped \ --namekuboard \ -p 80:80/tcp \ -p 10081:10081/tcp \ -e KUBOARD_ENDPOINT"http://192.168.136.55:80" \ -e KUBOARD_AGENT_SERVER_TCP_PORT"10081" \ -v /root/kuboard-data:/data \ e…

Flutter中如何让Android的手势导航栏完全透明?

Flutter 开发中 安卓机器都有 像ios 的手势操作栏, 也就是屏幕底下的 那条线。 但这条线默认是有颜色的 (像下面这样) 一、全屏幕方式 void main() {// 全屏沉浸式SystemChrome.setEnabledSystemUIMode(SystemUiMode.manual, overlays: []…

iOS ------ 多线程 GCD

一,GCD简介 GCD是Apple开发的一个多线程的较新的解决方案。它主要用于优化应用程序以支持多核处理器以及其他对称处理系统。它是一个在线程池模式的基础上执行的并发任务。 为什么要使用GCD? GCD!可用于多核的并行运算GCD会自动利用更多的…

【学习Day3】计算机基础

✍🏻记录学习过程中的输出,坚持每天学习一点点~ ❤️希望能给大家提供帮助~欢迎点赞👍🏻收藏⭐评论✍🏻指点🙏 1.5.4 Cache替换算法 Cache的页面淘汰算法 常用替换算法有: • 随机替换算法RA…

方差分析的七种类型

方差分析(ANOVA)是一种用于检验两个以上样本均数差别的显著性统计方法。根据不同的研究设计和数据类型,方差分析可以分为以下7种类型。 一、单因素方差分析 ①单因素方差分析说明 单因素方差分析用于研究一个定类数据(自变量&am…

开发一个SDK(starter)

1.创建项目 将pom.xml中build删除掉

用容器构建wordpress项目

用容器构建wordpress项目 #准备两个镜像 #数据库和centos docker pull mysql:5.7 docker pull centos:7 #创建一个wordpress文件夹,在wordpress文件里面写一个Dockerfile文件 vim DockerfileFROM centos:7 #基于centos环境RUN yum -y install epel-release ;\ #安装…

http协议及httpd安装组成

文章目录 一、http协议http协议通信过程http相关技术网站访问量HTTP工作机制HTTP协议版本HTTP请求访问的完整过程HTTP报文头部响应报文 二、httpd安装组成apache介绍和特点工作模式( MPM multi-processing module )Http相关文件Http编译安装httpd常见配置…

文件系统小册(FusePosixK8s csi)【1 Fuse】

文件系统小册(Fuse&Posix&K8s csi)【1 Fuse:用户空间的文件系统】 Fuse(filesystem in userspace),是一个用户空间的文件系统。通过fuse内核模块的支持,开发者只需要根据fuse提供的接口实现具体的文件操作就可以实现一个文…

Unity中的MVC框架

基本概念 MVC全名是Model View Controller 是模型(model)-视图(view)-控制器(controller)的缩写 是一种软件设计规范,用一种业务逻辑、数据、界面显示 分离的方法组织代码 将业务逻辑聚集到一个部件里面,在改进和个性化定制界面及用户交互的同时&#x…