【kubernetes】探索k8s集群的存储卷、pvc和pv

目录

一、emptyDir存储卷

1.1 特点

1.2 用途

1.3部署

二、hostPath存储卷 

2.1部署

2.1.1在 node01 节点上创建挂载目录

2.1.2在 node02 节点上创建挂载目录

2.1.3创建 Pod 资源

2.1.4访问测试

2.2 特点

2.3 用途

三、nfs共享存储卷

3.1特点

3.2用途

3.3部署

四、PVC 和 PV

4.1PVC 和 PV介绍

4.1.1PVC 的使用逻辑

4.2创建 StorageClass

4.3PV和PVC之间的相互作用遵循的生命周期: ⭐⭐⭐

根据这 5 个阶段,PV 的状态有以下 4 种: ⭐⭐⭐

4.4一个PV从创建到销毁的具体流程

4.5三种回收策略

4.6 查看pv定义的规格

4.7查看PVC的定义方式

4.8 k8s支持的存储插件的访问方式

五、部署NFS使用PV和PVC  

5.1配置nfs存储

5.2定义PV

5.3定义PVC

5.4测试访问

六、搭建 StorageClass + NFS,实现 NFS 的动态 PV 创建

6.1在stor01节点上安装nfs,并配置nfs服务

6.2创建 Service Account

6.3使用 Deployment 来创建 NFS Provisioner

6.4创建 StorageClass,负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

6.5创建 PVC 和 Pod 测试

七、温故而知新

7.1动态创建PV的步骤

7.2静态创建PV的步骤


容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题。首先,当容器崩溃时,kubelet 会重启它,但是容器中的文件将丢失——容器以干净的状态(镜像最初的状态)重新启动。其次,在Pod中同时运行多个容器时,这些容器之间通常需要共享文件。Kubernetes 中的Volume抽象就很好的解决了这些问题。Pod中的容器通过Pause容器共享Volume

查看支持的存储卷类型

kubectl explain pod.spec.volumes

常用的有:emptyDir、hostPath、nfs、persistentVolumeClaim 

一、emptyDir存储卷

当Pod被分配给节点时,首先创建emptyDir卷,并且只要该Pod在该节点上运行,该卷就会存在。正如卷的名字所述,它最初是空的。Pod 中的容器可以读取和写入emptyDir卷中的相同文件,尽管该卷可以挂载到每个容器中的相同或不同路径上当出于任何原因从节点中删除 Pod 时,emptyDir中的数据将被永久删除。

1.1 特点

  • 临时性存储:

emptyDir 提供的存储是临时的,其生命周期与所属的 Pod 相关。

当 Pod 被删除时,emptyDir 中的数据也会被清除,因此不适合用于持久化存储。

  • Pod 内容器之间的共享:

emptyDir 在同一个 Pod 中的所有容器之间共享,容器可以读写其中的数据。

  • 创建时机:

emptyDir 在 Pod 创建时被创建,当容器启动时,可以访问其中的空目录。

1.2 用途

适用于需要在同一个 Pod 中的多个容器之间进行临时数据交换或共享的场景。

例如,可以用于容器间的缓存共享、临时文件存储等用途。

1.3部署

apiVersion: v1
kind: Pod
metadata:
  name: pod-emptydir
  namespace: default
  labels:
    app: myapp
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
        #定义容器挂载内容
    volumeMounts:
        #使用的存储卷名称,如果跟下面volume字段name值相同,则表示使用volume的这个存储卷
    - name: html
          #挂载至容器中哪个目录
      mountPath: /usr/share/nginx/html/
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    volumeMounts:
    - name: html
          #在容器内定义挂载存储名称和挂载路径
      mountPath: /data/
    command: ['/bin/sh','-c','while true;do echo $(date) >> /data/index.html;sleep 2;done']
  #定义存储卷
  volumes:
  #定义存储卷名称  
  - name: html
    #定义存储卷类型
    emptyDir: {}

kubectl apply -f pod-emptydir.yaml

kubectl get pods -o wide

在上面定义了2个容器,其中一个容器是输入日期到index.html中,然后验证访问nginx的html是否可以获取日期。以验证两个容器之间挂载的emptyDir实现共享。

emptyDir存储卷可以实现pod中的容器之间的数据共享,但是存储卷不能做持久化数据,且会随着pod生命周期的结束而一起被删除

emptyDir存储卷是临时存储卷

二、hostPath存储卷 

hostPath卷将 node 节点的文件系统中的文件或目录挂载到集群中。
hostPath可以实现持久存储,但是在node节点故障时,也会导致数据的丢失。

2.1部署

2.1.1在 node01 节点上创建挂载目录

mkdir -p /data/pod/volume1
echo 'node01.zzz.com' > /data/pod/volume1/index.html

2.1.2在 node02 节点上创建挂载目录

mkdir -p /data/pod/volume1
echo 'node02.zzz.com' > /data/pod/volume1/index.html

2.1.3创建 Pod 资源

apiVersion: v1
kind: Pod
metadata:
  name: pod-hostpath
  namespace: default
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
        #定义容器挂载内容
    volumeMounts:
        #使用的存储卷名称,如果跟下面volume字段name值相同,则表示使用volume的这个存储卷
    - name: html
          #挂载至容器中哪个目录
      mountPath: /usr/share/nginx/html
          #读写挂载方式,默认为读写模式false
      readOnly: false
  #volumes字段定义了paues容器关联的宿主机或分布式文件系统存储卷
  volumes:
    #存储卷名称
    - name: html
          #路径,为宿主机存储路径
      hostPath:
            #在宿主机上目录的路径
        path: /data/pod/volume1
                #定义类型,这表示如果宿主机没有此目录则会自动创建
        type: DirectoryOrCreate

2.1.4访问测试

删除pod,再重建,验证是否依旧可以访问原来的内容

kubectl delete -f pod-hostpath.yaml  
kubectl apply -f pod-hostpath.yaml 

 删除pod,再重建,指定到node02节点,验证是否依旧可以访问原来的内容 

hostpath:可以实现持久化存储,使用node节点的目录或文件挂载到容器,但是存储空间会受到node节点单机限制,node节点故障数据会丢失,pod跨节点不能共享数据

2.2 特点

  • 直接访问主机文件系统: HostPath存储卷允许Pod直接访问主机节点上的文件系统,提供了对主机存储的直接访问权限。
  • 读写权限: Pod可以对HostPath上的文件进行读写操作,这为一些需要在容器内进行文件操作的应用提供了便利。
  • 节点依赖性: Pod使用HostPath时,会依赖节点上的具体路径,这可能导致在不同节点上部署相同Pod时出现问题,因为节点之间的文件系统路径可能不同。
  • 共享资源:多个Pod可以共享同一个HostPath,但要小心避免数据冲突或竞争条件

2.3 用途

  • 主机文件操作: 适用于需要在Pod内进行主机文件系统操作的场景,例如读取或写入主机上的特定文件。
  • 数据共享: 多个Pod可以共享同一个HostPath,这在一些需要多个Pod之间共享数据的情况下可能很有用。
  • 特殊需求: 用于满足一些特殊需求,例如某些应用需要在容器内直接操作主机上的某些文件。

需要注意的是,由于HostPath存储卷的使用可能涉及到权限和安全性的考虑,一般情况下建议慎重使用,并确保在生产环境中采取适当的安全措施

三、nfs共享存储卷

nfs:可以实现持久化存储,使用nfs将存储设备空间挂载到容器中,pod可以跨node节点共享数据

3.1特点

  • 共享性: NFS存储卷允许多个Pod在集群中共享同一个NFS服务器上的存储空间。这使得多个应用程序可以访问和操作相同的数据,促进了数据共享和协作。
  • 持久性: NFS存储卷提供了持久化的存储解决方案,数据存储在NFS服务器上并且在Pod重新启动或迁移时仍然可用。这对于需要长期保存数据的应用程序和服务非常有用。
  • 可扩展性: NFS存储卷可以轻松地扩展以满足应用程序的需求。通过在NFS服务器上添加更多的存储空间或者增加NFS服务器的数量,可以扩展存储容量和性能。
  • 灵活性: 使用NFS存储卷可以将存储与Pod分离,从而使得Pod可以在不同的节点上迁移而不会丢失数据。这种灵活性使得在Kubernetes集群中部署和管理应用程序变得更加容易。

3.2用途

  • 简化管理: NFS存储卷可以通过Kubernetes的PV和PVC对象进行声明和管理,而无需手动管理存储配置。这简化了存储管理的流程,并提高了部署和维护的效率。
  • 适用范围广泛: NFS存储卷适用于许多不同类型的应用程序和场景,包括数据库、文件共享、日志存储等。它提供了一种通用的存储解决方案,适用于各种不同的业务需求。

3.3部署

准备一台新机器,安装nfs,主机名stor01

在stor01节点上安装nfs,并配置nfs服务

mkdir /data/volumes -p
chmod 777 /data/volumes

vim /etc/exports
/data/volumes 192.168.246.0/24(rw,no_root_squash)

systemctl start rpcbind
systemctl start nfs

showmount -e
Export list for stor01:
/data/volumes 192.168.246.0/24

node节点添加映射

master节点操作

vim pod-nfs-vol.yaml
apiVersion: v1
kind: Pod
metadata:
  name: pod-vol-nfs
  namespace: default
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
    - name: html
      nfs:  #存储卷类型为nfs
        path: /data/volumes  #共享的目录为/opt/k8s
        server: 192.168.246.13 #可以为主机名(但是做了hosts映射),或者ip也可以

在nfs服务器上创建index.html

cd /data/volumes
vim index.html
<h1> test ye mian </h1>

master节点操作

  #删除nfs相关pod,再重新创建,可以得到数据的持久化存储

kubectl delete -f pod-nfs-vol.yaml   #删除nfs相关pod,再重新创建,可以得到数据的持久化存储

kubectl apply -f pod-nfs-vol.yaml

四、PVC 和 PV

4.1PVC 和 PV介绍

PV 全称叫做 Persistent Volume持久化存储卷。它是用来描述或者说用来定义一个存储卷的,这个通常都是由运维工程师来定义。

PVC 的全称是 Persistent Volume Claim,是持久化存储的请求。它是用来描述希望使用什么样的或者说是满足什么条件的 PV 存储。

4.1.1PVC 的使用逻辑

在 Pod 中定义一个存储卷(该存储卷类型为 PVC),定义的时候直接指定大小,PVC 必须与对应的 PV 建立关系,PVC 会根据配置的定义去 PV 申请,而 PV 是由存储空间创建出来的。PV 和 PVC 是 Kubernetes 抽象出来的一种存储资源。

上面介绍的PV和PVC模式是需要运维人员先创建好PV,然后开发人员定义好PVC进行一对一的Bond,但是如果PVC请求成千上万,那么就需要创建成千上万的PV,对于运维人员来说维护成本很高,Kubernetes提供一种自动创建PV的机制,叫StorageClass,它的作用就是创建PV的模板。

pvc和pv绑定,才可以给pod使用,StorageClass是创建pv的模板

4.2创建 StorageClass

创建 StorageClass 需要定义 PV 的属性,比如存储类型、大小等;另外创建这种 PV 需要用到的存储插件,比如 Ceph 等。 有了这两部分信息,Kubernetes 就能够根据用户提交的 PVC,找到对应的 StorageClass,然后 Kubernetes 就会调用 StorageClass 声明的存储插件,自动创建需要的 PV 并进行绑定。

存储: 存储工程师运维
PV: k8s 管理员运维
PVC:  用户维护

PV是集群中的资源。 PVC是对这些资源的请求,也是对资源的索引检查。 

4.3PV和PVC之间的相互作用遵循的生命周期: ⭐⭐⭐

Provisioning(配置)---> Binding(绑定)---> Using(使用)---> Releasing(释放) ---> Recycling(回收)

  • Provisioning,即 PV 的创建,可以直接创建 PV(静态方式),也可以使用 StorageClass 动态创建
  • Binding,将 PV 分配给 PVC
  • Using,Pod 通过 PVC 使用该 Volume,并可以通过准入控制StorageProtection(1.9及以前版本为PVCProtection) 阻止删除正在使用的 PVC
  • Releasing,Pod 释放 Volume 并删除 PVC
  • Reclaiming,回收 PV,可以保留 PV 以便下次使用,也可以直接从云存储中删除

根据这 5 个阶段,PV 的状态有以下 4 种: ⭐⭐⭐

  • Available(可用):表示可用状态,还未被任何 PVC 绑定
  • Bound(已绑定):表示 PV 已经绑定到 PVC
  • Released(已释放):表示 PVC 被删掉,但是资源尚未被集群回收
  • Failed(失败):表示该 PV 的自动回收失败

4.4一个PV从创建到销毁的具体流程

  • 一个PV创建完后状态会变成Available,等待被PVC绑定。
  • 一旦被PVC邦定,PV的状态会变成Bound,就可以被定义了相应PVC的Pod使用。
  • Pod使用完后会释放PV,PV的状态变成Released。
  • 变成Released的PV会根据定义的回收策略做相应的回收工作。有三种回收策略,Retain、Delete和Recycle。

4.5三种回收策略

  • Retain就是保留现场,K8S集群什么也不做,等待用户手动去处理PV里的数据,处理完后,再手动删除PV。
  • Delete策略,K8S会自动删除该PV及里面的数据。
  • Recycle方式,K8S会将PV里的数据删除,然后把PV的状态变成Available,又可以被新的PVC绑定使用。

kubectl explain pv    #查看pv的定义方式
FIELDS:
    apiVersion: v1
    kind: PersistentVolume
    metadata:    #由于 PV 是集群级别的资源,即 PV 可以跨 namespace 使用,所以 PV 的 metadata 中不用配置 namespace
      name: 
    spec

4.6 查看pv定义的规格

kubectl explain pv.spec    #查看pv定义的规格

kubectl explain pv.spec    #查看pv定义的规格
spce:
  nfs:(定义存储类型)
    path:(定义挂载卷路径)
    server:(定义服(定义访问模型,务器名称)
  accessModes:有以下三种访问模型,以列表的方式存在,也就是说可以定义多个访问模式) * * *
    - ReadWriteOnce          #(RWO)存储可读可写,但只支持被单个 Pod 挂载
	- ReadOnlyMany           #(ROX)存储可以以只读的方式被多个 Pod 挂载
	- ReadWriteMany          #(RWX)存储可以以读写的方式被多个 Pod 共享         注:官网

nfs 支持全部三种

#nfs 支持全部三种;iSCSI 不支持 ReadWriteMany(iSCSI 就是在 IP 网络上运行 SCSI 协议的一种网络存储技术);HostPath 不支持 ReadOnlyMany 和 ReadWriteMany。
  capacity:(定义存储能力,一般用于设置存储空间)
    storage: 2Gi (指定大小)
  storageClassName: (自定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)

 persistentVolumeReclaimPolicy: Retain    #回收策略(Retain/Delete/Recycle) ⭐⭐⭐

  persistentVolumeReclaimPolicy: Retain    #回收策略(Retain/Delete/Recycle) * * *
#Retain(保留):当删除与之绑定的PVC时候,这个PV被标记为released(PVC与PV解绑但还没有执行回收策略)且之前的数据依然保存在该PV上,但是该PV不可用,需要手动来处理这些数据并删除该PV。
#Delete(删除):删除与PV相连的后端存储资源(只有 AWS EBS, GCE PD, Azure Disk 和 Cinder 支持)
#Recycle(回收):删除数据,效果相当于执行了 rm -rf /thevolume/* (只有 NFS 和 HostPath 支持)

4.7查看PVC的定义方式

kubectl explain pvc   #查看PVC的定义方式

KIND:     PersistentVolumeClaim
VERSION:  v1
FIELDS:
   apiVersion	<string>
   kind	<string>  
   metadata	<Object>
   spec	<Object>

#PV和PVC中的spec关键字段要匹配,比如存储(storage)大小、访问模式(accessModes)、存储类名称(storageClassName)
kubectl explain pvc.spec
spec:
  accessModes: (定义访问模式,必须是PV的访问模式的子集)
  resources:
    requests:
      storage: (定义申请资源的大小)
  storageClassName: (定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)

4.8 k8s支持的存储插件的访问方式

五、部署NFS使用PV和PVC  

5.1配置nfs存储

cd /data/volumes
mkdir v{1,2,3,4,5}


vim /etc/exports
/data/volumes/v1 192.168.246.0/24(rw,no_root_squash)
/data/volumes/v2 192.168.246.0/24(rw,no_root_squash)
/data/volumes/v3 192.168.246.0/24(rw,no_root_squash)
/data/volumes/v4 192.168.246.0/24(rw,no_root_squash)
/data/volumes/v5 192.168.246.0/24(rw,no_root_squash)

exportfs -arv  #重新加载 NFS 导出设置,更新所有共享,并在执行过程中提供详细的输出信息,

showmount -e


官方文档:https://kubernetes.io/zh-cn/docs/tasks/configure-pod-container/configure-persistent-volume-storage/#create-a-persistentvolume

5.2定义PV

这里定义5个PV,并且定义挂载的路径以及访问模式,还有PV划分的大小。

[root@master01 pvc_pv]#cd  /opt/pvc_pv
[root@master01 pvc_pv]#vim pv-demo.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv001
  labels:
    name: pv001
spec:
  nfs:
    path: /data/volumes/v1
    server: 192.168.246.13
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 1Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv002
  labels:
    name: pv002
spec:
  nfs:
    path: /data/volumes/v2
    server: 192.168.246.13
  accessModes: ["ReadWriteOnce"]
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv003
  labels:
    name: pv003
spec:
  nfs:
    path: /data/volumes/v3
    server: 192.168.246.13
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv004
  labels:
    name: pv004
spec:
  nfs:
    path: /data/volumes/v4
    server: 192.168.246.13 
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 4Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv005
  labels:
    name: pv005
spec:
  nfs:
    path: /data/volumes/v5
    server: stor01 #可以是nfs机器的ip地址也可以是主机名,此处主机名,验证下
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 5Gi

配置文件解析

  • apiVersion: 指定了 Kubernetes API 的版本,这里使用的是 v1 版本。
  • kind: 指定了 Kubernetes 资源的类型,这里是 PersistentVolume,表示持久卷。
  • metadata: 元数据部分,包含了持久卷的名称和标签信息。
  • spec: 规范部分,定义了持久卷的详细配置。
  • nfs: 指定了该持久卷使用 NFS 存储,包括 NFS 服务器地址和路径。
  • accessModes: 指定了持久卷的访问模式,可以是 ReadWriteOnce(单个节点读写)、ReadOnlyMany(多个节点只读)或 ReadWriteMany(多个节点读写)。
  • capacity: 指定了持久卷的容量大小。

5.3定义PVC

这里定义了pvc的访问模式为多路读写,该访问模式必须在前面pv定义的访问模式之中。定义PVC申请的大小为2Gi,此时PVC会自动去匹配多路读写且大小为2Gi的PV,匹配成功获取PVC的状态,即为Bound

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc #定义pvc的名称
  namespace: default
spec:
  accessModes: ["ReadWriteMany"]
  resources:
    requests:
      storage: 2Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: pod-vol-pvc
  namespace: default
spec:
  containers:
  - name: myapp
    image: soscscs/myapp:v1
    volumeMounts:
    - name: html #与下面定义的存储卷名称一致
      mountPath: /usr/share/nginx/html
  volumes:
    - name: html #定义的是pvc的名称
      persistentVolumeClaim:
        claimName: mypvc #通过名称调用定义的pvc

这个 YAML 文件定义了两个 Kubernetes 资源:一个 PersistentVolumeClaim (PVC) 和一个 Pod,它们都配置在默认的命名空间中。

配置文件解析

PersistentVolumeClaim (PVC)

  • apiVersion: 指定了 Kubernetes API 的版本,这里是 v1。
  • kind: 资源类型,这里是 PersistentVolumeClaim,表示一个存储卷声明。
  • metadata: 包含资源的元数据,这里定义了 PVC 的名称为 mypvc。
  • spec: 规格定义部分。
  • accessModes: 定义了 PVC 的访问模式,这里是 ReadWriteMany,意味着存储卷可以被多个节点同时以读写方式挂载。
  • resources: 定义了资源请求。
  • requests: 指定了存储资源的请求量,这里是 2Gi。

Pod

  • apiVersion: 指定 Kubernetes API 的版本,这里也是 v1。
  • kind: 资源类型,这里是 Pod。
  • metadata: 包含资源的元数据,这里定义了 Pod 的名称为 pod-vol-pvc。
  • spec: 规格定义部分,描述了 Pod 的具体配置。
  • containers: 容器数组,每个对象定义了一个容器的配置。

    

  •  name: 容器的名称,这里是 myapp。
  • image: 容器的镜像,这里使用的是 ikubernetes/myapp:v1。
  • volumeMounts: 定义了容器内的挂载点。
  • name: 卷的引用名称,这里是 html。
  • mountPath: 容器内的挂载路径,这里是 /usr/share/nginx/html。
  • volumes: 定义了 Pod 级别的存储卷。

  • name: 卷的名称,与 volumeMounts 中的引用名称相匹配,这里是 html。

  • persistentVolumeClaim: 指定了卷的来源是一个 PVC。

  • claimName: 引用 PVC 的名称,这里是 mypvc。

5.4测试访问

在存储服务器上创建index.html,并写入数据,通过访问Pod进行查看,可以获取到相应的页面

在nfs存储服务器上

cd /data/volumes/v3/
echo "welcome to nanjing zzz" > index.html

master上操作

kubectl get pods -o wide
curl 

静态创建PV的步骤:

  • 准备好存储设备和共享目录
  • 准备创建PV资源的配置文件,定义访问模式(ReadWriteOnce、ReadOnlyMany、ReadWriteMany、ReadWriteMany)、存储空间大小、回收策略(Retain、Recycle、Delete)、存储设备类型、storageClassName等
  • 准备创建PVC资源的配置文件,定义访问模式(必要条件,必须是PV支持的访问模式)、存储空间大小(默认就近选择大于等于指定大小的PV)、storageClassName等来绑定PV
  • 创建Pod资源挂载PVC存储卷,定义卷类型为persistentVolumeClaim,并在容器配置中定义存储卷挂载点路径 

六、搭建 StorageClass + NFS,实现 NFS 的动态 PV 创建

Kubernetes 本身支持的动态 PV 创建不包括 NFS,所以需要使用外部存储卷插件分配PV。

详见官网  https://kubernetes.io/zh/docs/concepts/storage/storage-classes/

卷插件称为 Provisioner(存储分配器),NFS 使用的是 nfs-client,这个外部PV。
Provisioner:用于指定 Volume 插件的类型,包括内置插件(如 kubernetes.io/aws-ebs)和外部插件(如 exte卷插件会使用已经配置好的 NFS 服务器自动创建 rnal-storage 提供的 ceph.com/cephfs)

  • 内置插件:kubernetes.io/aws-ebs 是用于 AWS Elastic Block Store(EBS)的内置插件。它能够动态地创建和管理 AWS EBS 存储。
  • 外部插件 : ceph.com/cephfs,这是 Ceph 文件系统的外部插件。此外,nfs-client 也是一个外部插件,用于与 NFS 服务器集成,实现动态创建 PV。

搭建 StorageClass + NFS

  1. 创建StorageClass。
  2. 创建PVC绑定

搭建StorageClass+NFS,大致有以下几个步骤

  • 搭建一个可用的NFS Server
  • 创建Service Account.这是用来管控NFS provisioner在k8s集群中运行的权限。
  • 创建StorageClass.负责建立PV并调用NFS provisioner进行预定的工作,并让PV与PVC建立管理。
  • 创建NFS provisioner.有两个功能,一个是在NFS共享目录下创建挂载点(volume),另一个则是建了PV并将PV与NFS的挂载点建立关联

6.1在stor01节点上安装nfs,并配置nfs服务

mkdir /opt/k8s
chmod 777 /opt/k8s/
 
vim /etc/exports
/opt/k8s 192.168.246.0/24(rw,no_root_squash,sync)
 
systemctl restart nfs
  • 创建一个名为/opt/k8s的目录:mkdir /opt/k8s
  • 将/opt/k8s目录的权限设置为777:chmod 777 /opt/k8s/
  • 使用vim编辑/etc/exports文件,添加如下行,允许192.168.246.0/24网段的主机以读写模式挂载/opt/k8s目录,并且不进行root权限转换(norootsquash),并同步写入(sync):
  • 重启NFS服务:systemctl restart nfs

6.2创建 Service Account

创建 Service Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限,设置 nfs-client 对 PV,PVC,StorageClass 等的规则

#创建 Service Account 账户,用来管理 NFS Provisioner 在 k8s 集群中运行的权限
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-client-provisioner
---
#创建集群角色
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: nfs-client-provisioner-clusterrole
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["list", "watch", "create", "update", "patch"]
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["create", "delete", "get", "list", "watch", "patch", "update"]
---
#集群角色绑定
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: nfs-client-provisioner-clusterrolebinding
subjects:
- kind: ServiceAccount
  name: nfs-client-provisioner
  namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-clusterrole
  apiGroup: rbac.authorization.k8s.io

这段YAML文件定义了在Kubernetes中创建一个Service Account以及相关的ClusterRole和ClusterRoleBinding来管理NFS Provisioner的权限。

  • ServiceAccount部分定义了一个名为nfs-client-provisioner的Service Account,用于代表NFS Provisioner在集群中运行时的身份。
  • ClusterRole部分定义了一个名为nfs-client-provisioner-clusterrole的ClusterRole,包含了对于Persistent Volumes(PV)、Persistent Volume Claims(PVC)、StorageClasses等资源的访问权限规则。这些规则包括获取、列出、监视、创建和删除PV、PVC,以及获取、列出、监视StorageClasses等操作。
  • ClusterRoleBinding部分定义了一个名为nfs-client-provisioner-clusterrolebinding的ClusterRoleBinding,将前面定义的ClusterRole绑定到先前定义的Service Account上,以确保该Service Account拥有相应的权限。

通过这些定义,可以确保NFS Provisioner在Kubernetes集群中具有适当的权限,以管理PV、PVC和StorageClasses等资源。

6.3使用 Deployment 来创建 NFS Provisioner

NFS Provisione(即 nfs-client),有两个功能:一个是在 NFS 共享目录下创建挂载点(volume),另一个则是将 PV 与 NFS 的挂载点建立关联。

通过Deployment创建NFS Provisioner的实例,可以确保其在集群中始终处于运行状态,并且可以根据需要进行水平扩展。这样,Kubernetes集群中的应用程序可以方便地访问和使用NFS存储,而无需手动管理PV和NFS之间的关联关系。

#由于 1.20 版本启用了 selfLink,所以 k8s 1.20+ 版本通过 nfs provisioner 动态生成pv会报错,解决方法如下:

# 修改kube-apiserver.yaml文件,设置kube-apiserver的参数

vim /etc/kubernetes/manifests/kube-apiserver.yaml
spec:
  containers:
  - command:
    - kube-apiserver
    - --feature-gates=RemoveSelfLink=false  # 添加这一行,开启RemoveSelfLink特性
    - --advertise-address=192.168.41.31  
......
 
# 应用kube-apiserver.yaml文件的更改
kubectl apply -f /etc/kubernetes/manifests/kube-apiserver.yaml
 
# 删除kube-apiserver的Pod以便更改生效
kubectl delete pods kube-apiserver -n kube-system 
 
# 检查kube-apiserver的Pod是否重新启动
kubectl get pods -n kube-system | grep apiserver

kubectl apply -f /etc/kubernetes/manifests/kube-apiserver.yaml
kubectl delete pods kube-apiserver -n kube-system 
kubectl get pods -n kube-system | grep apiserver

vim nfs-client-provisioner.yaml

kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-client-provisioner
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nfs-client-provisioner
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner          #指定Service Account账户
      containers:
        - name: nfs-client-provisioner
          image: quay.io/external_storage/nfs-client-provisioner:latest
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes #挂载路径
          env:
            - name: PROVISIONER_NAME
              value: nfs-storage       #配置provisioner的Name,确保该名称与StorageClass资源中的provisioner名称保持一致
            - name: NFS_SERVER
              value: stor01           #配置绑定的nfs服务器
            - name: NFS_PATH
              value: /opt/k8s          #配置绑定的nfs服务器目录
      volumes:              #申明nfs数据卷
        - name: nfs-client-root
          nfs:
            server: stor01   #nfs服务器的主机名或IP也可以
            path: /opt/k8s

node节点加载镜像

6.4创建 StorageClass,负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: nfs-client-storageclass
provisioner: nfs-storage #这里的名称要和provisioner配置文件中的环境变量PROVISIONER_NAME保持一致
parameters:
  archiveOnDelete: "false" 
#false表示在删除PVC时不会对数据进行存档,即删除数据, #false表示在删除PVC时不会对数据目录进行打>
包存档,即删除数据;为ture时就会自动对数据目录进行打包存档,存档文件以archived开头

kubectl apply -f nfs-client-storageclass.yaml

kubectl get storageclass
  • kubectl apply -f nfs-client-storageclass.yaml: 通过 Kubernetes 的命令行工具 kubectl 应用(或创建)nfs-client-storageclass.yaml 文件中定义的资源,这里是一个 StorageClass。
  • kubectl get storageclass: 通过 kubectl 获取当前 Kubernetes 集群中所有的 StorageClass 列表。这可以用于确认上一步的 StorageClass 是否成功创建。

6.5创建 PVC 和 Pod 测试

# 定义持久卷声明(PersistentVolumeClaim),用于请求持久卷
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: test-nfs-pvc  # 持久卷声明的名称
spec:
  accessModes:
    - ReadWriteMany  # 访问模式设置为读写多个节点
  storageClassName: nfs-client-storageclass  # 关联的存储类对象
  resources:
    requests:
      storage: 1Gi  # 请求的存储容量为1Gi

---
# 定义Pod,用于使用持久卷
apiVersion: v1
kind: Pod
metadata:
  name: test-storageclass-pod  # Pod 的名称
spec:
  containers:
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    command:
    - "/bin/sh"
    - "-c"
    args:
    - "sleep 3600"  # 命令参数,让容器保持运行状态
    volumeMounts:
    - name: nfs-pvc  # 指定挂载的持久卷名称
      mountPath: /mnt  # 挂载路径
  restartPolicy: Never  # Pod 的重启策略
  volumes:
  - name: nfs-pvc  # 定义一个名为nfs-pvc的卷
    persistentVolumeClaim:
      claimName: test-nfs-pvc  # 引用之前定义的持久卷声明的名称

kubectl apply -f test-pvc-pod.yaml

PVC 通过 StorageClass 自动申请到空间

查看 NFS 服务器上是否生成对应的目录,自动创建的 PV 会以 ${namespace}-${pvcName}-${pvName} 的目录格式放到 NFS 服务器上

ls /opt/k8s

进入 Pod 在挂载目录 /mnt 下写一个文件,然后查看 NFS 服务器上是否存在该文件

kubectl exec -it test-storageclass-pod sh

/ # cd /mnt
/mnt # 
/mnt #  echo 'this is test file zzz' > test.txt
/mnt #

发现 NFS 服务器上存在,说明验证成功

cat /opt/k8s/default-test-nfs-pvc-pvc-63092b35-4764-4de2-80eb-5de3c3ddbda6/test.txt

七、温故而知新

7.1动态创建PV的步骤

1)准备好存储设备和共享目录
2)如果是外置存储卷插件,需要先创建serviceaccount账户(Pod使用访问apiserver使用的账户)和RBAC授权(创建角色授予相关资源对象的操作权限,再将账户与角色绑定),使得serviceaccount账户具有对PV、PVC、StorageClass等资源的操作权限
3)准备创建外置存储插件Pod资源的配置文件(外置存储插件在k8s集群中以pod形式运行),定义serviceaccount账户作为Pod的用户,并设置相关的环境变量(比如存储插件名称等)
4)创建StorageClass资源,provisioner要设置为存储插件名称
------------------------以上操作是一劳永逸的,

之后只需要创建PVC资源引用StorageClass就可以自动调用存储卷插件动态创建PV资源
5)准备创建PVC资源的配置文件,定义访问模式、存储空间大小、storageClassName设置为StorageClass资源名称等来动态创建PV资源并绑定PV
6)创建Pod资源挂载PVC存储卷,定义卷类型为persistentVolumeClaim,并在容器配置中定义存储卷挂载点路径

7.2静态创建PV的步骤

  • 准备好存储设备和共享目录
  • 准备创建PV资源的配置文件,定义访问模式(ReadWriteOnce、ReadOnlyMany、ReadWriteMany、ReadWriteMany)、存储空间大小、回收策略(Retain、Recycle、Delete)、存储设备类型、storageClassName等
  • 准备创建PVC资源的配置文件,定义访问模式(必要条件,必须是PV支持的访问模式)、存储空间大小(默认就近选择大于等于指定大小的PV)、storageClassName等来绑定PV
  • 创建Pod资源挂载PVC存储卷,定义卷类型为persistentVolumeClaim,并在容器配置中定义存储卷挂载点路径 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/665342.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

WiFi串口服务器与工业路由器:局域网应用的协同之力

在工业物联网&#xff08;IIoT&#xff09;迅猛发展的当下&#xff0c;局域网&#xff08;LAN&#xff09;作为连接工业设备与数据中心的桥梁&#xff0c;其重要性日益凸显。WiFi串口服务器与工业路由器作为局域网中的关键组件&#xff0c;以其独特的性能和功能&#xff0c;为传…

网络分层与各层网络协议介绍

一.OSI七层模型 1.OSI&#xff08;Open Systems Interconnection&#xff09;七层模型是由国际标准化组织&#xff08;ISO&#xff09;提出的一种网络通信协议的参考模型&#xff0c;用于标准化网络通信的过程。 OSI模型将网络通信分为七个层次&#xff0c;每个层次负责不同的…

python weakref的应用举例

问题: 有很多时候, 我们想拥有一个实例, 但是不增加引用计数. 怎么解决呢? 场景: 英雄击打怪物, 如果怪物在受到英雄打击前就死了, 我们可以在英雄的实例里面, 使用一个弱引用来引用怪物, 如果还存在就击打, 不存在就不击打.一般的ui系统都有事件系统, ui上触发一个事件, 然…

如何选择国产数据库?

ORACLE的强大是全方位的,作为甲方DBA,喝喝咖啡,看看报纸,开开会,临听一下ORACLE ACE吹水! 作为国企的DBA, CTO.基本上国企都算是传统行业,都是跑ERP系统,进销存系统.客户关系系统.基本上都是B2B业务. 直接面对普通老百姓的互联网业务非常少. 核心业务都是使用ORACLE,少量互联网…

洞察全球商机:精细化策略引领海外营销平台对接

随着全球市场的不断融合和互联网技术的飞速发展&#xff0c;企业越来越意识到海外营销与客服系统对接的重要性。 NetFarmer&#xff0c;作为一家专注于服务企业数字化出海的公司&#xff0c;对于海外市场的洞察和对接策略有着独特的见解。今天运营坛将深入探讨海外营销平台对接…

华为SSH实验

华为SSH实验 实验拓扑&#xff1a; 实验要求&#xff1a;从SSH客户端AR1采用stelnet方式登录到SSH 服务器端。 实验步骤&#xff1a; 1.完成基本配置&#xff08;略&#xff09; sys Enter system view, return user view with CtrlZ. [AR1]sys CLIENT [CLIENT]INT g0/0/0 [C…

计算机网络-BGP状态机制与对等体表项

前面我们讲了BGP交互后需要建立对等体&#xff0c;BGP存在两种对等体关系类型&#xff1a;EBGP及IBGP&#xff0c;那对等体建立过程的状态是怎样的呢&#xff1f;BGP报文我们也学习过了&#xff0c;现在通过结合起来了解下BGP的状态机以及对等体表。 一、BGP状态机 也就是两台路…

什么是网络流量监控系统?

目录 什么是网络流量监控系统&#xff1f; 网络流量监控系统的功能 实时监控 流量分析 故障排除 安全监控 IT运维中的网络流量监控系统应用案例 案例一&#xff1a;优化带宽使用 案例二&#xff1a;快速排除故障 案例三&#xff1a;提升网络安全 网络流量监控系统的…

实战经验分享之移动云快速部署Stable Diffusion SDXL 1.0

本文目录 前言产品优势部署环境准备模型安装测试运行 前言 移动云是中国移动面向政府、企业和公众的新型资源服务。 客户以购买服务的方式&#xff0c;通过网络快速获取虚 拟计算机、存储、网络等基础设施服务&#xff1b;软件开发工具、运行环境、数据库等平台服务&#xff1…

CATIA入门操作案例——压缩弹簧绘制,螺旋线的使用,法则曲线应用

目录 引出画压缩弹簧画等距部分画两端的压缩部分曲线缝合和扫掠封闭曲面得实体 总结异形弹簧新建几何体草图编辑&#xff0c;画一条样条线进行扫掠&#xff0c;圆心和半径画出曲面上的螺旋线再次选择扫掠&#xff0c;圆心和半径 其他自定义信号和槽1.自定义信号2.自定义槽3.建立…

【ETAS CP AUTOSAR基础软件】EcuM模块详解

文章包含了AUTOSAR基础软件&#xff08;BSW&#xff09;中EcuM模块相关的内容详解。本文从AUTOSAR规范解析&#xff0c;ISOLAR-AB配置以及模块相关代码分析三个维度来帮读者清晰的认识和了解EcuM。文中涉及的SOLAR-AB配置以及模块相关代码都是依托于ETAS提供的工具链来配置与生…

迷你主机Esxi 6.7挂载新硬盘

背景 硬件&#xff1a;零刻SER Pro 6 系统&#xff1a;vmware Exsi 6.7.0 Update 3 现有的硬盘槽位占满了&#xff0c;但空间不够用&#xff0c;想要通过USB外接移动硬盘来进行扩容。使用了一块250G的硬盘做测试。 步骤 TL;DR # 停止usbarbitrator服务 /etc/init.d/usbarbi…

django中,出现CSRF verification failed. Request aborted.错误

这是跨站点访问的防范机制&#xff0c;csrf是一个令牌&#xff0c;会验证登录&#xff0c;需要在setting中把 "django.middleware.csrViewMiddleware" 注释掉 并在html文件中的<body>内添加 {% csrf token %} 就可以了

③单细胞学习-pbmc的Seurat 流程

目录 1&#xff0c;数据读取 2&#xff0c;线粒体基因查看 3&#xff0c;数据标准化 4&#xff0c;识别高变基因 5&#xff0c;进行数据归一化 6&#xff0c;进行线性降维 7&#xff0c;确定细胞簇 8&#xff0c;UMAP/tSNE降维&#xff08;保存pbmc_tutorial.rds&#…

路由选路原则

5.2路由选路原则 路由就是报文从源端到目的端的路径。当报文从路由器到目的网段有多条路由可达时&#xff0c;路由器可以根据路由表中最佳路由进行转发。最佳路由的选取与发现此路由的路由协议的优先级、路由的度量有关。当多条路由的协议优先级与路由度量都相同时&#xff0c…

elasticsearch7.15实现用户输入自动补全

Elasticsearch Completion Suggester&#xff08;补全建议&#xff09; Elasticsearch7.15安装 官方文档 补全建议器提供了根据输入自动补全/搜索的功能。这是一个导航功能&#xff0c;引导用户在输入时找到相关结果&#xff0c;提高搜索精度。 理想情况下&#xff0c;自动补…

chap5 CNN

卷积神经网络&#xff08;CNN&#xff09; 问题描述&#xff1a; 利用卷积神经网络&#xff0c;实现对MNIST数据集的分类问题 数据集&#xff1a; MNIST数据集包括60000张训练图片和10000张测试图片。图片样本的数量已经足够训练一个很复杂的模型&#xff08;例如 CNN的深层…

【课程总结】Day4:信息论和决策树算法

前言 本章内容主要是学习机器学习中的一个重要模型&#xff1a;决策树&#xff0c;围绕决策树的应用&#xff0c;我们展开了解到&#xff1a;熵的定义、熵的计算、决策树的构建过程(基于快速降熵)、基尼系数等&#xff0c;从而使得我们对决策树有了直观认识。 熵的介绍 因为…

U盘损坏打不开?数据恢复攻略全解析

随着信息技术的飞速发展&#xff0c;U盘已成为我们日常工作和生活中不可或缺的数据存储工具。然而&#xff0c;当U盘突然损坏&#xff0c;无法打开时&#xff0c;我们往往会陷入焦虑和无助之中。本文将为大家详细解析U盘损坏打不开的原因&#xff0c;并提供两种有效的数据恢复方…

【stm32】stm32f407 ch340下载

一、接线 1、ch340 Vcc短接3v3 5v---------5v GND-----GND TX ------RX RX --------TX 2、stm32F407 如上图&#xff0c;我们需要进入isp下载模式&#xff0c;接线图如下 二、下载 使用FlyMcu选择你要下载的程序文件中的.hex文件&#xff0c; 然后配置图如下&#xff1…