统计信号处理-匹配滤波器实现与验证(matlab仿真)

什么是匹配滤波器

匹配滤波器是一种信号处理技术,它用于从噪声中提取信号,特别是在信号与噪声比率较低的情况下。匹配滤波器之所以存在,是因为它在信号检测和估计方面具有几个关键的优势:

  1. 最大化信噪比:匹配滤波器设计成最大化信号与噪声比率(SNR),这有助于信号的检测和估计。

  2. 最优检测:在统计意义上,匹配滤波器提供了最优的信号检测性能,即在给定的信噪比下,它能够以最高的概率检测到信号。

  3. 时间延迟:匹配滤波器能够提供最小的时间延迟,这意味着信号可以在尽可能短的时间内被检测到。

  4. 波形匹配:匹配滤波器与预期信号的波形匹配,这使得它能够针对特定的信号进行优化。

  5. 应用广泛:匹配滤波器在许多领域都有应用,包括雷达、通信、声纳、医学成像等。

  6. 理论基础:匹配滤波器基于Wiener滤波器理论,它是一种理想化的滤波器,可以在给定的噪声条件下提供最优的信号估计。

  7. 信号恢复:在信号被噪声污染的情况下,匹配滤波器可以帮助恢复信号的原始形状。

  8. 简单高效:虽然匹配滤波器在理论上是理想的,但在实际应用中,它可以通过简化的模型来实现,这些模型既简单又高效。

匹配滤波器的工作原理是通过将接收到的信号与信号的复共轭(时间反转)进行卷积,然后对结果进行积分,从而实现信号的增强和噪声的抑制。这种方法在信号检测和估计中非常有效,尤其是在信号已知且噪声是加性白噪声的情况下。

匹配滤波怎么实现

匹配滤波器的实现通常包括以下几个步骤:

  1. 信号模型:首先,需要有一个信号模型,即你期望接收到的信号的确切形式。这个模型通常是基于信号的预期特性,例如,信号的波形、持续时间等。

  2. 信号的傅里叶变换:将信号模型进行傅里叶变换,得到其频域表示。这个频域表示将用于匹配滤波器的设计。

  3. 设计匹配滤波器:匹配滤波器的频率响应是信号模型的复共轭(如果考虑实数信号,则为共轭)。这意味着,如果信号模型是s(t),那么匹配滤波器的频率响应将是S∗(f),其中S(f)是信号模型的傅里叶变换,S∗(f)是其复共轭。

  4. 接收信号的傅里叶变换:当接收到实际的信号时,需要对它进行傅里叶变换,以得到其频域表示。

  5. 频域乘法:将接收信号的傅里叶变换与匹配滤波器的频率响应相乘。这一步在频域中完成,是匹配滤波器的核心操作。

  6. 逆傅里叶变换:将乘法的结果进行逆傅里叶变换,以得到时域中的输出信号。这个输出信号是经过匹配滤波器处理的结果,它应该具有增强的信号成分和抑制的噪声成分。

  7. 阈值检测:在时域输出信号上设置一个阈值,用于检测信号的存在。如果输出信号在某个时间点的幅度超过阈值,则可以认为信号被成功检测。

  8. 信号估计和参数提取:在信号被检测到之后,可以根据输出信号估计信号的参数,例如到达时间、幅度、频率等。

匹配滤波器的实现可以利用快速傅里叶变换(FFT)算法来高效地进行傅里叶变换和逆傅里叶变换,这是在实际应用中常用的技术。FFT算法可以显著减少计算量,使得匹配滤波器在实时系统中更加实用。

在实际应用中,还可能需要考虑信号的不确定性、噪声的特性、多普勒效应等因素,这些都可能影响匹配滤波器的设计和性能。此外,匹配滤波器通常假设信号是已知的,如果信号存在变化或者未知的部分,可能需要采用自适应滤波器或其他更复杂的信号处理技术。

例题和代码解读

解答(1).

由匹配滤波器的知识可得,接收信号可表示为   

图 1 发射信号仿真图

图 2匹配滤波仿真图

则滤波前后的时域实部如下图所示

图3 滤波前后对比图

分析:匹配滤波前由于添加了噪声,观测数据长度取信号长度的两倍,图3中红色区域标注了有信号的接收回波段。可以看到在匹配滤波前很难发现信号存在,而匹配滤波后可以明显发现信号的存在。经过匹配滤波之后,可以看出回波被压缩在1.5e-5s处,也即 R=2250m处,与理论推导相符合。

解答(2).

K=1

K=2

K=3

K=5

图 不同干扰幅度对比

clearvars;close all; clc;
%% 输入参数
T=1e-4; %脉冲宽度
Ts=1.25e-7; %采样时间间隔
B=4e6; %带宽
c=3e8; %光速
miu=B/T; %调制斜率
A=1; %目标回波幅度
R=2250; %目标距离
t0=2*R/c;
n0=2*R/c/Ts;%目标数字延时
sigma2=1; %噪声方差
noisedB=10*log10(sigma2);
SNRin=A^2/sigma2;
 %%
Nhalf=round(T/2/Ts);
Nsgrid=(-Nhalf:Nhalf);
Ns=length(Nsgrid); %信号序列的点数
%产生信号
uarr=exp(1i*pi*miu*((Nsgrid)*Ts).^2);
figure()
subplot(2,1,1)
plot(Nsgrid*Ts*1e6,real(uarr));
title('发射信号 u(n)');
xlabel('n');ylabel('幅度');
freq =linspace(-1/2/T,1/2/T,Ns);
%频城采样
Sf = fftshift(fft(uarr));
subplot(2,1,2)
plot(freq*1e-6,abs(Sf))
hold on
title('发射信号频谱 U(f)');
xlabel('f /MHz');
ylabel('幅度');
hold off
%% 产生匹配滤波器
harr=fliplr(conj(uarr)); %匹配滤波器
% 1、根据信号产生匹配滤波器,fliplr 作用是将序列反转即将
% [a1 a2 …… an]变为[an …… a2 a1],这一步等效于书上的关于原点翻转再向右平移 N-1
% 2、注意对于复信号需要取共轭,即 conj()
% 3、对于这种匹配滤波器的产生方式最后输出最大值点在 y[N-1]
figure
subplot(2,1,1)
plot(Nsgrid*Ts*1e6,real(harr))
hold on
xlabel('n');ylabel('幅度');
title('滤波器 h(n)');
freq =linspace(-1/2/T,1/2/T,Ns);
%频城采样
Sf = fftshift(fft(harr));
subplot(2,1,2)
plot(freq*1e-6,abs(Sf))
hold on
title('滤波器频谱 H(f)');
xlabel('f /MHz');
ylabel('幅度');
hold off
%% 产生回波信号
Nz=2*Ns; %观测序列的点数
Nhalf=0;
Nzgrid=(0:Nz-1);
warr=wgn(1,Nz,noisedB); %产生噪声
zarr=zeros(1,Nz);
zarr=zarr+warr; %模拟噪声
% zarr(n0:n0+Ns-1)=zarr(n0:n0+Ns-1)+A*uarr; %模拟回波信号的进入
zarr(n0+1:n0+Ns)=zarr(n0+1:n0+Ns)+A*uarr; %模拟回波信号的进入
% 保证前面有 n0 个 Ts 间隔,及对应于时间间隔为 n0*Ts=2*R/c
t=linspace(-T/2,T/2,Nz);
rtl=A*(abs(t-t0)<T/2).*exp(1j*pi*miu*(t-t0).^2);
figure()
subplot(3,1,1)
plot(Nzgrid,real(zarr));
ax=gca;YLim=ax.YLim;
patch([n0+1-Nhalf n0+1-Nhalf n0+Ns-Nhalf n0+Ns-Nhalf],[YLim(1) YLim(2) YLim(2) YLim(1)],[1,0,0],'facealpha',0.1,'HandleVisibility','off','linewidth',0.1);
title('接收信号 z(n)');
xlabel('n');ylabel('幅度');
hold off
%% 匹配滤波
yarr=filter(harr,1,zarr);
%yarr=conv(zarr,harr);
t1=linspace(-T,T,Ns+Nz-1);
subplot(3,1,2)
plot((Nzgrid-800)*Ts,abs(yarr));
title('匹配滤波后信号 y(n)');
xlim([0.1e-5,0.3e-4])
ylim([0,800])
xlabel('时间t/s');ylabel('幅度');
subplot(3,1,3)
plot((Nzgrid-800)*Ts*c/2,abs(yarr));
title('匹配滤波后信号 y(n)');
xlim([600,4000])
ylim([0,800])
xlabel('距离R/m');ylabel('幅度');
grid on
%% 加入干扰情况

%产生干扰信号
K=1; %干扰个数
Aj=0.2;
Ajarr=Aj*ones(1,K)'; %干扰幅度矢量
%这里假设每个干扰幅度一致,可以修改
fj0=0.5e6;
detfj=0.4e6;
fj=(0:K-1)'*detfj+fj0; %干扰频率矢量
ujarr=repmat(Ajarr,1,Ns).*exp(1i*2*pi*fj*Nsgrid*Ts+repmat(1i*pi*miu*(Nsgrid*Ts).^2,K,1));
%干扰信号矩阵(K*Ns) 其中第 j 行表示第 j 个干扰信号
uiarr=sum(ujarr,1); %总的干扰信号
%sum(x,1)表示按列求和
% figure()
% hold on
% plot(Nsgrid,real(uiarr));
% title('干扰信号 ui(n)');
% xlabel('n');ylabel('幅度');
% hold off
ziarr=zarr;
ziarr(1:Ns)=ziarr(1:Ns)+uiarr; %增加干扰后的接收信号
% figure()
% hold on
% plot(Nzgrid,real(ziarr));
% ax=gca;YLim=ax.YLim;
% patch([n0+1-Nhalf n0+1-Nhalf n0+Ns-Nhalf n0+Ns-Nhalf],[YLim(1) YLim(2) YLim(2) YLim(1)],[1,0,0],'facealpha',0.1,'HandleVisibility','off','linewidth',0.1);
% patch([-Nhalf -Nhalf Ns-Nhalf Ns-Nhalf],[YLim(1) YLim(2) YLim(2) YLim(1)],[0,0,1],'facealpha',0.1,'HandleVisibility','off','linewidth',0.1);
% title('干扰后接收信号 zi(n)');
% xlabel('n');ylabel('幅度');
% hold off
yiarr=filter(harr,1,ziarr);

plot((Nzgrid-800)*Ts*c/2,abs(yiarr));
title(['有干扰时匹配滤波后信号 yi(n)','(K=',num2str(K),',Aj/A=',num2str(Aj),')']);
xlabel('距离R/m');ylabel('幅度');
%%
hold on
xlim([-2400,2500])
ylim([0,1500])
grid on

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/663512.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JVS低代码表单消息提示:从站内信到钉钉全覆盖,适应各类应用场景

表单消息提示配置 表单消息发送方式分为站内信、公众号、企业微信、钉钉和邮件。 站内信发送是指系统内部之间发送消息&#xff0c;用户登录系统后以弹窗形式在桌面右下角提示。 公众号发送消息则是用户在系统个人中心绑定微信后通过公众号接收消息。 企业微信、钉钉和邮件…

【Docker】宝塔创建Docker容器配置nginx

前言 本篇是我入门docker的第一篇&#xff0c;由于docker具有很好的移植性&#xff0c;易于安装&#xff0c;开箱即用&#xff1b;签约的公司项目开发需要我进行学习&#xff0c;否则money减半&#xff0c;5555~ 百度找了一圈&#xff0c;只有关于docker怎么装宝塔服务器的却没…

运算符重载(下)

目录 前置和后置重载前置的实现Date& Date::operator()代码 后置的实现Date Date::operator(int )代码 前置--和后置--重载前置--的实现Date& Date::operator--( )代码 后置--的实现Date Date::operator--(int )代码 流插入运算符重载流插入运算符重载的实现流提取运算…

1、css3 动态button展示学习

效果图&#xff1a; 1、首先创建html代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title…

LNMP分布式搭建

一、准备三台主机 192.168.100.11 mysql 192.168.100.12 nginx 192.168.100.13 php 二、关闭防火墙及安全策略 systemctl stop firewalld setenforce 0 三、安装nginx&#xff08;192.168.100.11&#xff09; 1、添加nginx源 vim /etc/yum.repos.d/ng…

数据库系统概念(第七周 第一堂)(E-R模型)

目录 前言 基本概念 观点与模型 作用与要求 E-R模型元素 实体&#xff08;entity&#xff09; 实体集&#xff08;entity set&#xff09; 属性&#xff08;attribute&#xff09; 域&#xff08;domain&#xff09; 码 &#xff08;key&#xff09; 联系 &#x…

allure测试报告用例数和 pytest执行用例数不相同问题

我出现的奇怪问题&#xff1a; pytest执行了9条用例&#xff0c;但是测试报告确只显示3条用例 我将其中的一个代码删除后&#xff0c;发现allure测试报告又正常了 我觉得很奇怪这个代码只是删除了二维数组的第一列&#xff0c;我检查了半天都找不到问题&#xff0c;只有降低版本…

优选算法一:双指针算法与练习(移动0)

目录 双指针算法讲解 移动零 双指针算法讲解 常见的双指针有两种形式&#xff0c;一种是对撞指针&#xff0c;一种是快慢指针。 对撞指针&#xff1a;一般用于顺序结构中&#xff0c;也称左右指针。 对撞指针从两端向中间移动。一个指针从最左端开始&#xff0c;另一个从最…

云计算与 openstack

文章目录 一、 虚拟化二、云计算2.1 IT系统架构的发展2.2 云计算2.3 云计算的服务类型 三、Openstack3.1 OpenStack核心组件 一、 虚拟化 虚拟化使得在一台物理的服务器上可以跑多台虚拟机&#xff0c;虚拟机共享物理机的 CPU、内存、IO 硬件资源&#xff0c;但逻辑上虚拟机之…

Python魔法之旅-魔法方法(04)

目录 一、概述 1、定义 2、作用 二、主要应用场景 1、构造和析构 2、操作符重载 3、字符串和表示 4、容器管理 5、可调用对象 6、上下文管理 7、属性访问和描述符 8、迭代器和生成器 9、数值类型 10、复制和序列化 11、自定义元类行为 12、自定义类行为 13、类…

【香橙派 AIpro】新手保姆级开箱教程:Linux镜像+vscode远程连接

香橙派 AIpro 开发板 AI 应用部署测评 写在最前面一、开发板概述官方资料试用印象适用场景 二、详细开发前准备步骤1. 环境准备2. 环境搭建3. vscode安装ssh插件4. 香橙派 AIpro 添加连接配置5. 连接香橙派 AIpro6. SSH配置 二、详细开发步骤1. 登录 juypter lab2. 样例运行3. …

Windows11 安装Oracle11gR2

一、下载Oracle 11gR2 安装包下载地址&#xff1a;Database Software Downloads | Oracle 下载两个压缩包&#xff0c;下载完成后解压缩到同一个目录。 二、安装Oracle 11gR2 Oracle安装是单程票&#xff0c;因为Oracle卸载特别麻烦&#xff0c;因此最好一次通过。 2.1 安…

排八字软件有哪些?

排八字软件有哪些&#xff1f;在市面上有很多排八字的软件可供选择&#xff0c;其中一些比较知名的有&#xff1a; 无敌八字排盘软件&#xff1a;这是一款功能强大的八字排盘软件&#xff0c;提供详细的八字解析和命理分析服务&#xff0c;且完全免费。 网易星盘&#xff1a;网…

【JAVA |String类】JAVA中的String类常见用法详解

✨✨谢谢大家捧场&#xff0c;祝屏幕前的小伙伴们每天都有好运相伴左右&#xff0c;一定要天天开心哦&#xff01;✨✨ &#x1f388;&#x1f388;作者主页&#xff1a; &#x1f388;丠丠64-CSDN博客&#x1f388; ✨✨ 帅哥美女们&#xff0c;我们共同加油&#xff01;一起…

500元以内的蓝牙耳机哪个牌子好?首推四大热门品牌盘点

在500元以内的预算范围内&#xff0c;蓝牙耳机试市场上还是有很多可以选择的&#xff0c;它们以出色的音质、舒适的佩戴体验和稳定的连接性能赢得了消费者的青睐&#xff0c;作为一个蓝牙耳机的重度使用者&#xff0c;下也用过不少的500元以内的蓝牙耳机&#xff0c;下面就给大…

小白跟做江科大32单片机之光敏传感器控制蜂鸣器

代码部分 1.思路 通过光敏电阻&#xff0c;控制蜂鸣器的发声 2.butter.h代码 #ifndef _BUTTER__H #define _BUTTER__H void butter_Init(void); void butter_on(void); void butter_off(void); #endif 3.butter.c代码 #include "stm32f10x.h" void butter…

React-组件通信

组件通信 概念&#xff1a;组件通信就是组件之间的数据传递&#xff0c;根据组件嵌套关系的不同&#xff0c;有不同的通信方法 父传子 基础实现 实现步骤&#xff1a; 1.父组件传递数据-在子组件标签上绑定属性 2.子组件接收数据-子组件通过props参数接收数据 props说明 1.…

【C++题解】1446. 人口增长问题

问题&#xff1a;1446. 人口增长问题 类型&#xff1a;循环应用 题目描述&#xff1a; 我国现有 x 亿人口&#xff0c;按照每年 0.1% 的增长速度&#xff0c;n 年后将有多少人&#xff1f; 输入&#xff1a; 一行&#xff0c;包含两个整数 x 和 n &#xff0c;分别是人口基…

Centos 7下的VulFocus靶场搭建详细教程

一、靶场介绍 自带 Flag 功能&#xff1a;每次启动 flag 都会自动更新&#xff0c;明确漏洞是否利用成功。带有计分功能。兼容 Vulhub、Vulapps 中所有漏洞镜像。 二、下载安装 下载 VMware 软件下载 centos镜像 三、Docker知识 学习链接&#xff1a;https://www.runoob.c…

lynis安全漏洞扫描工具

Lynis是一款Unix系统的安全审计以及加固工具&#xff0c;能够进行深层次的安全扫描&#xff0c;其目的是检测潜在的时间并对未来的系统加固提供建议。这款软件会扫描一般系统信息&#xff0c;脆弱软件包以及潜在的错误配置。 安装 方式1 git下载使用git clone https://github…