光栅幅值细分原理与实现

本文介绍光栅幅值细分原理与实现。

光栅是工业测量领域中常见的传感器,如下图。主要厂家有雷尼绍,海德汉,配套的光栅读数头有模拟信号的,也有直接细分输出数字脉冲的,本文的细分针对模拟信号,即有正弦信号,余弦信号,Index信号输出的光栅读数头。光栅细分方法有很多(如锁相倍频细分法,幅值细分法等),本文介绍常用的幅值细分法。

1.细分原理

由于常见的光栅栅距为20um,40um,对应一个正弦或余弦周期输出,分辨率太低,因此需要采用相应的细分方法,将分辨率调整到合适的值,如采用1000细分,可将栅距为20um的光栅尺,分辨率调高到20/1000um=0.02um。
幅值细分法是根据莫尔信号幅值和相位的对应关系,通过对幅值大小的分割判断来实现莫尔信号的相位细分。传统的幅值细分法利用电压比较器组将幅值信号与参考电压信号比较来输出细分脉冲,由于光栅传感器输出的莫尔信号波形近似正弦信号,如下图,在不同的相位处所对应的灵敏度不同,当信号幅值接近峰值时需要较大的相位变化才能引起微小的幅值变化,因此容易造成细分误差。

为了克服莫尔信号灵敏度不等造成细分误差的缺点,通常采用构造新函数的方法,以提高信号的线性度,这里采用正切函数构造的方法。

1)正切函数构造原理

设光栅传感器输出的2路莫尔信号为:

\left\{\begin{matrix} u_{1}=A\cdot \sin \theta \\ u_{2}=A\cdot \cos \theta \end{matrix}\right.

\left [ 0,\frac{\pi }{2} \right ]区间来考察,可构造如下正切函数:

u_{3}= \left\{\begin{matrix} \tan \theta =\frac{\left | A\cdot \sin \theta \right | }{\left | A\cdot \cos \theta \right | }, \left | A\cdot \sin \theta \right | \leq \left | A\cdot \cos \theta \right | \\ \cot \theta =\frac{\left | A\cdot \cos \theta \right | }{\left | A\cdot \sin \theta \right | }, \left | A\cdot \sin \theta \right | \geq \left | A\cdot \cos \theta \right | \end{matrix}\right.

其中,\theta为光栅信号相位

而以\left [ \frac{\pi }{2}, \pi\right ]区间来考察,原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \sin \theta在此区间就变成了A\cdot \cos \theta(取绝对值的原因),而原来在\left [ 0,\frac{\pi }{2} \right ]区间的A\cdot \cos \theta在此区间就变成了A\cdot \sin \theta(取绝对值的原因),仍然可以按上述u_{3}构造正切函数。其他区间依次类推。

构造的正切函数u_{3}波形如下图。

新函数u_{3}近似三角波,是一个周期函数(周期为\frac{\pi }{2}),包含一半正切函数波形,一半余切函数波形。采用这种方法的线性度高,且不需要确定莫尔信号的峰值大小,不易受信号衰减的影响,因此,幅值细分法得到了广泛的应用。

2)区间划分

由于不同的区间采用的函数是不一样的,为了便于信号处理,将整个周期划分为8个区间,当前信号所处的区间可由u_{1}u_{2}极性,u_{1}u_{2}大小关系来进行确定。区间划分如下表。

区间u_{1}极性u_{2}极性\left |u_{1} \right |\left |u_{2} \right |大小比较
1++\left |u_{1} \right |< \left |u_{2} \right |
2++\left |u_{1} \right |> \left |u_{2} \right |
3+-\left |u_{1} \right |> \left |u_{2} \right |
4+-\left |u_{1} \right |< \left |u_{2} \right |
5--\left |u_{1} \right |< \left |u_{2} \right |
6--\left |u_{1} \right |> \left |u_{2} \right |
7-+\left |u_{1} \right |> \left |u_{2} \right |
8-+\left |u_{1} \right |< \left |u_{2} \right |

3)区间细分数确定

设N为一个周期内总细分数。为了方便计算,我们将8个区间的计算统一映射到第1个区间,得到在不同区间的细分数值,如下表。

区间细分数
1\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
2\frac{N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
3\frac{N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
4\frac{N}{2}-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
5\frac{N}{2}+\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }
6\frac{3\cdot N}{4}-\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
7\frac{3\cdot N}{4}+\frac{N\cdot \arctan \frac{\left | u_{2} \right | }{\left | u_{1} \right |}}{2\cdot \pi }
8N-\frac{N\cdot \arctan \frac{\left | u_{1} \right | }{\left | u_{2} \right |}}{2\cdot \pi }

其中,

a)u_{1}u_{2}为各自区间的电压值

b)区间可由“2)区间划分”确定

2.细分实现

清楚原理,细分实现就比较简单了,细分实现框图如下图。

总的流程如下:

1)FPGA/DSP通过同步高速A/D采样,获取sin信号和cos信号幅值

2)FPGA/DSP通过区间划分表获取当前区间

3)FPGA/DSP通过当前区间,计算当前细分数

4)当信号经过一个周期后,总细分数加1

5)输出当前细分值

3.细分误差来源

造成细分误差的来源有很多,主要有以下几种:

1)直流误差。光栅输出正弦信号和余弦信号直流偏置不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

2)幅值误差。光栅输出正弦信号和余弦信号幅值不一样,造成A/D采样幅值不一样,从而造成计算相位时的误差。

3)正交误差。光栅输出正弦信号和余弦信号有相位差,在计算相位时出现误差,可以通过示波器的李沙育图的圆度来判断。

可以通过误差补偿的方法减小误差,误差补偿顺序应遵循先进行直流补偿,再进行幅值补偿,最后进行正交补偿。

本文介绍了光栅幅值细分原理与实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/663022.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数字化业务流程升级再造,解困基本半导体的CRM应用5年之痒

在新能源汽车、工业互联、5G通信、消费电子等需求的强力拉动下&#xff0c;以碳化硅为代表的第三代半导体产业迎来爆发式增长。 深圳基本半导体有限公司&#xff08;以下简称“基本半导体”&#xff09;是中国第三代半导体创新企业&#xff0c;专业从事碳化硅功率器件的研发与…

NineData 联合创始人周振兴将参加开源数据库技术沙龙,并和 PolarDB 开源社区一起去娃哈哈带来主题分享!

5月31日&#xff08;周五&#xff09;&#xff0c;PolarDB 开源社区将联合娃哈哈集团共同举办开源数据库技术沙龙&#xff01;NineData 联合创始人周振兴受邀参加&#xff0c;并将分享《NineData&#xff0c;Any to Any 数据复制之路》的技术分享。 本次活动汇聚了 PolarDB 产品…

用于水利工程系统方面的传感器M-A542VR10

近几年快速发展的IC技术和计算机技术&#xff0c;为传感器的发展提供了良好与可靠的科学技术基础。使传感器的发展日新月益&#xff0c;且数字化、多功能与智能化是现代传感器发展的重要特征爱普生也在不断发展自己的传感器型号。随着水利工程技术的不断进步&#xff0c;传感器…

面向对象编程:坦克飞机大战游戏的重构之旅

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、面向对象编程思想入门 坦克对象的定义 属性与行为方法的实现 二、面向过程与面向对象…

子网划分案例

4.2子网划分 “有类编址”的地址划分过于死板&#xff0c;划分的颗粒度太大&#xff0c;会有大量的主机号不能被充分利用&#xff0c;从而造成了大量的IP地址资源浪费。因此可以利用子网划分来减少地址浪费&#xff0c;即VLSM (Variable Length Subnet Mask)&#xff0c;可变长…

python清洗苹果产量数据:从字符串到整型的转化

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言 二、使用普通方法清洗数据 1. 创建字典并遍历 2. 示例代码 3. 结果展示 三、使…

WAMP无法启动mysql

一种原因是原来安装过mysql,mysql默认是自启动的&#xff0c;而WAMP内置mysql会发生冲突&#xff0c;所以 解决方法&#xff1a; winR 输入 services.msc 将mysql关闭&#xff0c;并设为手动模式

Java是长连接

Java是长连接&#xff0c;springboot进程被结束才断开 一个连接池有10个连接&#xff0c;2个并发会占用2个连接&#xff0c;用完之后归还给连接池 springboot服务用户的是线程池&#xff0c;返回结果之后&#xff0c;线程自动归还到线程池。跟php机制不一样 php是短链接&am…

【Leetcode 206】 反转链表——此递归相当妙啊

题目 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&#xff1a;[2,1]示例 3&#xff1a; …

重学java 51.Collections集合工具类、泛型

"我已不在地坛&#xff0c;地坛在我" —— 《想念地坛》 24.5.28 一、Collections集合工具类 1.概述:集合工具类 2.特点: a.构造私有 b.方法都是静态的 3.使用:类名直接调用 4.方法: static <T> boolean addAll(collection<? super T>c,T... el…

.net JQ AJAX 请求 FromBody 接收格式

$.ajax({ url: “/api/banchang/EmpTble/Login2”, type: ‘Post’, data: JSON.stringify({ Emppassword: pass, EmpName: name }), contentType: ‘application/json’, beforeSend: function () { // 禁用按钮防止重复提交 /* $(“#create”).attr({ disabled: “disabled”…

同一个类中方法调用,导致@Transactional失效

1.背景 查了一下Spring文档&#xff0c;就是上面这段话所说的情况。 2.Spring官方文档有这么一段话 https://docs.spring.io/spring-framework/docs/current/reference/html/data-access.html#transaction-declarative In proxy mode (which is the default), only external …

经典获奖案例 | 度小满互联网金融开源软件治理解决方案

近日&#xff0c;广东省粤港澳合作促进会金融专业委员会和粤港澳大湾区金融创新研究院在广州联合举办“2024年粤港澳大湾区数智金融峰会暨第二届金融创新优秀应用案例与解决方案技术成果授牌仪式”。《度小满互联网金融开源软件治理解决方案》从数百个申报项目中脱颖而出&#…

基于心电疾病分类的深度学习模型部署应用于OrangePi Kunpeng Pro开发板

一、开发板资源介绍 该板具有4核心64位的处理器和8TOPS的AI算力&#xff0c;让我们验证一下&#xff0c;在该板上跑深度学习模型的效果如何&#xff1f; 二、配网及远程SSH登录访问系统 在通过microusb连接串口进入开发板调试&#xff0c;在命令行终端执行以下命令 1&#…

Docker安装MySQL的详细教程

1. 拉取MySQL镜像 拉取MySQL镜像。您可以指定版本号&#xff0c;例如5.7或8.0&#xff0c;如果不指定&#xff0c;默认会拉取最新稳定版。 docker pull mysql:5.7或者&#xff0c;使用最新版本&#xff1a; docker pull mysql:latest2. 运行MySQL容器 拉取镜像完成后&#…

C++ 进阶(3)虚函数表解析

个人主页&#xff1a;仍有未知等待探索-CSDN博客 专题分栏&#xff1a;C 请多多指教&#xff01; 目录 一、虚函数表 二、单继承&#xff08;无虚函数覆盖&#xff09; 继承关系表&#xff1a; 对于实例&#xff1a;derive d 的虚函数表&#xff1a; 对于实例&#xff1a;b…

《C语言深度解剖》(15):动态内存管理和柔性数组

&#x1f921;博客主页&#xff1a;醉竺 &#x1f970;本文专栏&#xff1a;《C语言深度解剖》 &#x1f63b;欢迎关注&#xff1a;感谢大家的点赞评论关注&#xff0c;祝您学有所成&#xff01; ✨✨&#x1f49c;&#x1f49b;想要学习更多C语言深度解剖点击专栏链接查看&…

后端企业级开发之yaml数据序列化格式文件详解2024

yaml格式 数据格式 yaml 是一种数据序列化的格式 容易阅读 容易与脚本语言交互 以数据为核心 重数据轻格式 我们要知道他怎么书写 大小写敏感 属性层级关系使用多行描述 每行结尾使用冒号结束 使用缩进表示层级关系 同层级左侧对其 只运行使用空格 属性前面添加空格 #表…

JAVA 大鱼吃小鱼小游戏

java实现大鱼吃小鱼&#xff0c;支持身份证防沉迷、账号密码、选择难度 放沉迷 登录 选择难度 游戏界面

【Unity Shader入门精要 第9章】更复杂的光照(四)

1. 透明度测试物体的阴影 对于物体有片元丢弃的情况&#xff0c;比如透明度测试或者后边会讲到的消融效果&#xff0c;使用默认的 ShadowCaster Pass 会产生问题&#xff0c;这是因为该Pass在生成阴影映射纹理时&#xff0c;没有考虑被丢弃的片元&#xff0c;而是使用完整的模…