深度学习——卷积神经网络

卷积神经网络

    • 1.导入需要的包
    • 2.数据导入与数据观察
    • 3.卷积层
    • 4.汇聚层
        • 最大汇聚
      • 平均汇聚
      • 全局平均汇聚
    • 5.搭建卷积神经网络进行手写数字识别
      • 导入并对数据进行预处理
      • 搭建卷积神经网络
    • 6.利用函数式API与子类API搭建复杂神经网络
      • 残差层

1.导入需要的包

numpy as np: NumPy是一个用于科学计算的库,它提供了高效的数组处理能力,对于图像处理等任务非常有用。
pandas as pd: Pandas是一个强大的数据分析和处理库,它提供了数据结构(如DataFrame)和工具,用于数据操作和分析。
matplotlib.pyplot as plt: Matplotlib是一个绘图库,pyplot是其中的一个模块,它提供了一个类似于MATLAB的绘图框架。
sklearn: Scikit-Learn是一个用于机器学习的库,它提供了各种分类器、回归器、聚类算法等。
tensorflow as tf: TensorFlow是一个开源的机器学习库,用于构建和训练各种类型的机器学习模型。
from tensorflow import keras: Keras是TensorFlow的一个高级API,它允许您轻松地构建和训练复杂的神经网络。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import sklearn
import tensorflow as tf
from tensorflow import keras

2.数据导入与数据观察

从sklearn中导两张大小为的图像,并组成一个简单数据集image。数据集image的4维张量分别对应着
数据集中的样本数2
图像高度427
图像宽度640
图像通道3

from sklearn.datasets import load_sample_image

china = load_sample_image("china.jpg") / 255
flower = load_sample_image("flower.jpg") / 255
plt.subplot(1,2,1)
plt.imshow(china)
plt.subplot(1,2,2)
plt.imshow(flower)
print("china.jpg的维度:",china.shape)
print("flower.jpg的维度:",flower.shape)

images = np.array([china,flower])
images_shape = images.shape

print("数据集的维度:",images_shape)

在这里插入图片描述

3.卷积层

u = 7 #卷积核边长
s = 1 #滑动步长
p = 5 #输出特征图数目

filters: 整数,指定卷积核的数量,即输出的维度
kernel_size: 一个整数或元组((height, width)),指定卷积核的尺寸
strides: 一个整数或元组((stride_height, stride_width)),指定卷积的步长
padding: 字符串,指定边缘填充方式。有两个选项:
"VALID":不进行填充,卷积的边缘部分将被忽略。
"SAME":进行填充,使得输出的高度和宽度与输入相同(或根据步长缩小)。填充通常是通过在输入周围添加零来实现。
input_shape: 一个整数元组,指定输入数据的形状。对于 Conv2D 层,input_shape 应该包含三个整数,分别是输入的高度、宽度和通道数。

conv = keras.layers.Conv2D(filters= p, kernel_size= u, strides= s,padding="SAME", activation="relu", input_shape=images_shape)

卷积后的图像的4维张量分别对应着 - 数据集大小2 - 图像的高427与宽640,正是由于padding==“SAME”,所以图像大小并没有发生变化 - 输出特征图个数5。

image_after_conv = conv(images)
print("卷积后的张量大小:", image_after_conv.shape)

在这里插入图片描述

4.汇聚层

最大汇聚

最大汇聚是在下采样区域范围内提取所有元素数值的最大值,参数pool_size决定下采样区域的大小。

由于pool_size = 2,最大汇聚以后图像的特征图大小在高度与宽度上都各自缩小一半。

pool_max = keras.layers.MaxPool2D(pool_size=2)
image_after_pool_max = pool_max(image_after_conv)
print("最大汇聚后的张量大小:",image_after_pool_max.shape)

在这里插入图片描述

平均汇聚

平均汇聚是将下采样区域内的所有元素的数值取平均,参数pool_size决定下采样区域的大小。

pool_avg = keras.layers.AvgPool2D(pool_size=2)
image_after_pool_avg = pool_avg(image_after_conv)
print("平均汇聚后的张量大小:",image_after_pool_avg.shape)

在这里插入图片描述

全局平均汇聚

全局平均汇聚是将特征图内的所有元素的数值取平均,输出的特征图只有一个单值。

pool_global_avg = keras.layers.GlobalAvgPool2D()
image_after_pool_global_avg = pool_global_avg(image_after_conv)
print("全局平均汇聚后的张量大小:",image_after_pool_global_avg.shape)

在这里插入图片描述

5.搭建卷积神经网络进行手写数字识别

导入并对数据进行预处理

path = "D:/rgzn/神经网络/"  #存放.csv的文件夹
train_Data = pd.read_csv( path+'mnist_train.csv', header = None) #训练数据
test_Data = pd.read_csv( path+'mnist_test.csv', header = None) #测试数据
X, y = train_Data.iloc[:,1:].values/255, train_Data.iloc[:,0].values #数据归一化

X_valid, X_train = X[:5000].reshape(5000,28,28) , X[5000:].reshape(55000,28,28) #验证集与训练集
y_valid, y_train = y[:5000], y[5000:]

X_test,y_test = test_Data.iloc[:,1:].values.reshape(10000,28,28)/255, test_Data.iloc[:,0].values #测试集
print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)

在这里插入图片描述
此时数据还是三维的张量,由于手写数字图像是灰度图像,通道只有1,因此,需要将数据扩展为四维张量。

X_train = X_train[..., np.newaxis]
X_valid = X_valid[..., np.newaxis]
X_test = X_test[..., np.newaxis]

print(X_train.shape)
print(X_valid.shape)
print(X_test.shape)

在这里插入图片描述

搭建卷积神经网络

model_cnn_mnist = keras.models.Sequential([
    keras.layers.Conv2D(32, kernel_size=3, padding="same", activation="relu"),
    keras.layers.Conv2D(64, kernel_size=3, padding="same", activation="relu"),
    keras.layers.MaxPool2D(pool_size=2),
    keras.layers.Flatten(),
    keras.layers.Dropout(0.25),
    keras.layers.Dense(128, activation="relu"),
    keras.layers.Dropout(0.5),
    keras.layers.Dense(10, activation="softmax")
])

第一层卷积层,使用32个大小的卷积核
第二层卷积层,使用64个大小的卷积核
第三层汇聚层,将所有特征映射的维度缩小至原先一半
第四层是平展层,将原先四维张量(55000,14,14,64)平展成两维张量(55000,),即将一个样本的所有参数项平展成一个维度。
后续是全连接层。

model_cnn_mnist.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"])
model_cnn_mnist.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))

在这里插入图片描述
查看准确率

model_cnn_mnist.evaluate(X_test, y_test, batch_size=1)

在这里插入图片描述
用.summary()观察神经网络的整体情况

model_cnn_mnist.summary()

在这里插入图片描述
之前在全连接前馈神经网络中,我们手写数字识别的准确率大约在97%左右,而利用卷积神经网络,可以将准确率提升到99%。

6.利用函数式API与子类API搭建复杂神经网络

残差层

输出的特征图数目每隔一阵就会扩大一倍,且在扩大的同时,特征图的高度、宽度减半(滑动步长s=2),共计经过特征图数目为

  • 64的残差块3个
  • 128的残差块4个
  • 256的残差块6个
  • 以及512的残差块3个
    其中,残差连接分为实线连接与虚线连接
    实线连接即残差块的输入直接跨层与经过卷积的结果相加
    虚线连接主要针对的是滑动步长为2的部分,由于特征图的大小减小了,所以输入无法直接与卷积结果相加,也需要减小特征图大小
class ResidualUnit(keras.layers.Layer):
    def __init__(self, filters, strides=1, activation="relu"):
        super().__init__()
        self.activation = keras.activations.get(activation)
        
        self.main_layers = [
            keras.layers.Conv2D(filters, 3, strides=strides, padding = "SAME", use_bias = False), 
            keras.layers.BatchNormalization(),
            self.activation,
            keras.layers.Conv2D(filters, 3, strides=1, padding = "SAME", use_bias = False),
            keras.layers.BatchNormalization()]
        
        # 当滑动步长s = 1时,残差连接直接将输入与卷积结果相加,skip_layers为空,即实线连接
        self.skip_layers = [] 
        
        # 当滑动步长s = 2时,残差连接无法直接将输入与卷积结果相加,需要对输入进行卷积处理,即虚线连接
        if strides > 1:
            self.skip_layers = [
                keras.layers.Conv2D(filters, 1, strides=strides, padding = "SAME", use_bias = False),
                keras.layers.BatchNormalization()]

    def call(self, inputs):
        Z = inputs
        for layer in self.main_layers:
            Z = layer(Z)
        skip_Z = inputs
        for layer in self.skip_layers:
            skip_Z = layer(skip_Z)
        return self.activation(Z + skip_Z)

搭建完整的ResNet-34神经网络

model = keras.models.Sequential()

model.add(keras.layers.Conv2D(64, 7, strides=2, padding = "SAME", use_bias = False))
model.add(keras.layers.BatchNormalization())
model.add(keras.layers.Activation("relu"))
model.add(keras.layers.MaxPool2D(pool_size=3, strides=2, padding="SAME"))

prev_filters = 64
for filters in [64] * 3 + [128] * 4 + [256] * 6 + [512] * 3:
    strides = 1 if filters == prev_filters else 2    #在每次特征图数目扩展时,设置滑动步长为2
    model.add(ResidualUnit(filters, strides=strides))
    prev_filters = filters
    
model.add(keras.layers.GlobalAvgPool2D())
model.add(keras.layers.Flatten())
model.add(keras.layers.Dense(10, activation="softmax"))

训练:

model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"])
model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))

在这里插入图片描述
查看准确率:

model.evaluate(X_test,y_test,batch_size=1)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/661190.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

新火种AI|寻求合作伙伴,展开豪赌,推出神秘AI项目...苹果能否突破AI困境?

作者:小岩 编辑:彩云 2024年,伴随着AI技术的多次爆火,不仅各大科技巨头纷纷进入AI赛道展开角力,诸多智能手机厂商也纷纷加紧布局相关技术,推出众多AI手机。作为手机领域的龙头老大,苹果自然是…

Java中的ORM框架——myBatis

一、什么是ORM ORM 的全称是 Object Relational Mapping。Object代表应用程序中的对象,Relational表示的是关系型数据库,Mapping即是映射。结合起来就是在程序中的对象和关系型数据库之间建立映射关系,这样就可以用面向对象的方式&#xff0c…

写代码之前一定要提前想好思路

就和写数学题目一样,在做题目之前要先把思路确立下来。可能是我早年做数学的时候老是着急做题目没怎么分析过题目,把这个习惯不自觉地代入了代码的写入当中。习惯的养成使得我即使明白了自己的问题也依然会不断的犯错,看来只有刻意地提醒自己…

去除字符串中的空格和特殊字符

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 用户在输入数据时,可能会无意中输入多余的空格,或在一些情况下,字符串前后不允许出现空格和特殊字符,…

[双指针] --- 快乐数 盛最多水的容器

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏: 算法Journey 本篇博客我们分享一下双指针算法中的快慢指针以及对撞双指针,下面我们开始今天的学习吧~ 🏠 快乐数 📒 题…

windows系统电脑外插键盘驱动出现感叹号或者显示未知设备,键盘无法输入的解决办法

笔记本外插的键盘不能用,鼠标可以使用。 查找故障,结果打开设备管理器看到键盘那项里是一个的黄色惊叹号显示未知设备![图片]如下图所示 其实解决办法很简单,不要相信网上的一些博主说删除什么注册表,我开始跟着他们操…

蓝桥杯-AB路线(详细原创)

问题描述: 有一个由 N M 个方格组成的迷宫,每个方格写有一个字母 A 或者 B。小蓝站在迷宫左上角的方格,目标是走到右下角的方格。他每一步可以移动到上下左右相邻的方格去。 由于特殊的原因,小蓝的路线必须先走 K 个 A 格子、再…

Slurm集群使用基础

Introduction 我们在做生物信息分析时,对于大规模的上游数据的处理,一般需要在大型服务器或集群上进行。我最早接触并使用的是一个基于SLURM调度系统的集群,在此记录一下基础使用方法。 高性能计算集群(High-Performance Comput…

vs工程添加自定义宏

一、简介 用户可以添加自定义宏变量方便工程路径名称的修改和配置 例:$(SolutionDir) 为解决方案路径,$(PojectDir) 为工程所在路径 测试环境:vs2017,qt5.14.0 二、配置 1、打开属性窗口:视图-》其他窗口-》属性管…

使用Webcam实现摄像头的开启和关闭,并保存和复制图片

实现思路 0,将webcam的jar文件传入项目中 1,显示摄像头的地方:创建一个画板,在画板上添加开启和关闭按钮 2,设置开启和关闭功能:创建一个类实现动作监听器,进而实现监听动作按钮 3&#xff…

豪赌?远见?浙江东方的量子冒险

今年4月16日,量子通信概念异动,浙江东方(600120)拉升涨停。 量子和浙江东方,要把这两个词联系起来似乎并不太容易。 浙江东方,即浙江东方金融控股集团股份有限公司,系浙江省国资委下属浙江省国…

华发股份:加强业务协同 新政下项目热销

“5.17”楼市政策出台后,各地密集落地执行。5月27—28日,上海、广州、深圳三个一线城市跟进落地“517”新政。上海发布《关于优化本市房地产市场平稳健康发展政策措施的通知》,共计9条调整政策,涵盖外地户籍、人才、单身、婚否、企…

SpringBootWeb 篇-深入了解会话技术与会话跟踪三种技术(Cookie 会话跟踪、Session 会话跟踪与 JWT 令牌会话跟踪)

🔥博客主页: 【小扳_-CSDN博客】 ❤感谢大家点赞👍收藏⭐评论✍ 文章目录 1.0 会话技术 2.0 会话跟踪 2.1 会话跟踪 - Cookie 2.1.1 客户端获取 Cookie 的流程 2.1.2 Cookie 会话跟踪的特点 2.2 会话跟踪 - Session 2.2.1 客户端获取 SESSION…

【Linux 网络编程】网络的基础知识详解!

文章目录 1. 计算机网络背景2. 认识 "协议" 1. 计算机网络背景 网络互联: 多台计算机连接在一起, 完成数据共享; 🍎局域网(LAN----Local Area Network): 计算机数量更多了, 通过交换机和路由器连接。 🍎 广域网WAN: 将…

猫狗分类识别模型建立②模型建立

一、导入依赖库 pip install opencv-python pip install numpy pip install tensorflow pip install keras 二、模型建立 pip install opencv-python pip install numpy pip install tensorflow pip install kerasimport os import xml.etree.ElementTree as ETimpor…

Python Selenium 详解:实现高效的UI自动化测试

落日余辉,深情不及久伴。大家好,在当今软件开发的世界中,自动化测试已经成为保障软件质量和快速迭代的重要环节。而在自动化测试的领域中,UI自动化测试是不可或缺的一部分,它可以帮助测试团队快速验证用户界面的正确性…

【RAG论文】文档树:如何提升长上下文、非连续文档、跨文档主题时的检索效果

RAPTOR Recursive Abstractive Processing for Tree-Organized RetrievalICLR 2024 Stanfordhttps://arxiv.org/pdf/2401.18059 RAPTOR(Recursive Abstractive Processing for Tree-Organized Retrieval)是一种创建新的检索增强型语言模型,它…

使用NuScenes数据集生成ROS Bag文件:深度学习与机器人操作的桥梁

在自动驾驶、机器人导航及环境感知的研究中,高质量的数据集是推动算法发展的关键。NuScenes数据集作为一项开源的多模态自动驾驶数据集,提供了丰富的雷达、激光雷达(LiDAR)、摄像头等多种传感器数据,是进行多传感器融合…

【PostgreSQL17新特性之-事务级别超时参数transaction_timeout】

PostgreSQL数据库里有多个和会话相关的参数,PostgreSQL17-beta1版本新增了一个transaction_timeout参数,来限制事务的持续时间。 当前的一些和会话相关的超时参数如下 -----------------------------------------------------------------------------…

OrangePi Kunpeng Pro 开发板测评 | AI 边缘计算 大模型部署

0 前言 此次很幸运能够参与 OrangePi Kunpeng Pro 开发板的测评,感谢 CSDN 给予这次机会。 香橙派联合华为发布了基于昇腾的 OrangePi Kunpeng Pro 开发板,具备 8TOPS 的 AI 算力,能覆盖生态开发板者的主流应用场景,具备完善的配…