一篇文章搞懂二叉树

文章目录

      • DP
      • 叶的度
      • 树的度
      • 节点的层次
      • 节点的祖先
      • 节点的子孙
      • 双亲节点或父节点
    • 树的表示
      • 孩子兄弟表示法
      • 双亲表示法
      • 树和非树
      • 树的应用
  • 二叉树
    • 满二叉树
    • 完全二叉树
    • 推论
    • 二叉树的存储
      • 以数组的方式
      • 以链表的方式
      • 堆(Heap)
      • 堆的分类
        • 大根堆和小根堆的作用
    • 二叉树的遍历
    • DFS和BFS

DP

动态规划(英语:Dynamic programming,简称 DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划常常适用于有重叠子问题和最优子结构性质的问题,并且记录所有子问题的结果,因此动态规划方法所耗时间往往远少于朴素解法。

动态规划有自底向上和自顶向下两种解决问题的方式。自顶向下即记忆化递归,自底向上就是递推。

使用动态规划解决的问题有个明显的特点,一旦一个子问题的求解得到结果,以后的计算过程就不会修改它,这样的特点叫做无后效性,求解问题的过程形成了一张有向无环图。动态规划只解决每个子问题一次,具有天然剪枝的功能,从而减少计算量。

树是所有节点的集合,最上面的节点是根,最下面的节点是叶。树的集合就是森林。树是递归定义的,因为每一个节点都可以拆成根+子树。子树又可以拆分,一直拆分,也就是递归了。

叶的度

该节点下面直接相连的节点个数

树的度

整个树中最大的叶的度

节点的层次

从根开始定义起,根为第1层,根的子节点为第2层,以此类推;如果一个树的根为0层的话,那空树只能用-1来表示了。这就是复数了。为了方便表示,让空树等于0,根为1层比较好。本片所用的理论就是根为1层。

节点的祖先

从根到该节点所经分支上的所有节点

节点的子孙

以某节点为根的子树中任一节点都称为该节点的子孙

双亲节点或父节点

若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B
的父节点

树的表示

树结构相对线性表就比较复杂了,要存储表示起来就比较麻烦了,实际中树有很多种表示方式,
如:双亲表示法,孩子表示法、孩子兄弟表示法等等。我们这里就简单的了解其中最常用的孩子
兄弟表示法

孩子兄弟表示法

typedef int DataType;
struct Node
{
    struct Node* _firstChild1;    // 第一个孩子结点
    struct Node* _pNextBrother;   // 指向其下一个兄弟结点
    DataType _data;               // 结点中的数据域
};

这个树的结构叫:左孩子,右兄弟。

什么意思呢,就是如果这个节点有子节点,也就是该节点的孩子,就让这个节点的左孩子指针保存孩子的地址,如果该节点没用孩子,就指向空,如果该节点的父节点除了该节点还有其他的子节点,就让该节点的右兄弟指向兄弟节点。这里的兄弟只算亲兄弟,也就是同一个父亲的兄弟。

请添加图片描述

对于一个正常的树状结构来说,需要进一步的转换才能用左孩子右兄弟的方法来表示。就像左边这个树,BCD是A的孩子,A只需要指向他最左边的孩子B就行,然后用B的右兄弟指针连接C,再让C的右兄弟连接D。发现B没有孩子,就让B的左孩子指向空。C的孩子是E,就让左孩子指向E。E既没有孩子,也没有兄弟,左孩子和右兄弟指针都指向空。然后返回上一节点C,再通过C去找D,D有孩子F,D的左孩子就指向F,F还有一个兄弟,就让F的右兄弟指向G。到这里就都连接完了,其他没用的指针都指向空。

双亲表示法

因为一个父亲可以有多个孩子,但是一个孩子只能有一个父亲,所以可以逆向思考,让孩子存父亲节点。

这里的树的结构体要全部存在数组中,就是定义一个指针数组,数组的每个元素都是指针,每个指针指向一个树的节点。

优点是:寻找父节点的题

缺点是:找孩子节点要变量整个数组,也就是整个树。

请添加图片描述

树和非树

子树不可相交,每个子树仅有一个父节点,一颗树有N个节点,有N-1条边。不能有孤立的点。比如,5个节点的树,一定有4条边。

就是树不能成环,不能有回路,以后学的的可能有回路,等等

树的应用

目录树,C盘,D盘了,文件夹就是节点,文件可能是节点可能是叶子


二叉树

二叉树是特殊的树,就是度为2的树。每个节点最多两个孩子,也可以是空节点,那就是叶子

满二叉树

就是每个节点都是满的,除了叶子。根节点为1

结论:一个完全二叉树的层次为k,那么总的节点个数就是(2k-1),等比数列求和

每一层的节点个数就是2k-1

请添加图片描述

完全二叉树

完全二叉树的最底层可以不完整,但是必须从左到右连续。最后一层不满,但连续。满二叉树是特殊的完全二叉树。

树–>二叉树–>完全二叉树–>满二叉树

推论

二叉树的(叶子节点的个数)是(度为2的节点的个数+1)。叶节点的个数是有俩孩子节点个数的多一个。

如果一个二叉树有N个节点,高度是h。

  • 对于满二叉树来说:2*h-1=N;h=log2(N+1)
  • 对于完全二叉树来说:2*h -1-X=N。(0<=x<=2h-1-1) ,log2N <= h <=log2(N + 1)

例题:

1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( B )
A 不存在这样的二叉树
B 200
C 198
D 199
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( A )
A n
B n+1
C n-1
D n/2
3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( B )
A 11
B 10
C 8
D 12

二叉树的存储

以数组的方式

从根节点开始在数组下标为0的地方,然后从左到右依次填入数组,对于完全二叉树来说。

  • 若一个父节点的下标是i,那么孩子的下标分别是:2i+1和2i+2。i=4.2i+1=9,2i+2=10。
  • 若一个子节点的下标是i,那么父节点下标是:(i-1)/2。(6-1)/2=5/2=2. (5-1)/2=4/2=2。

以链表的方式

链表的方式大概有两种:二叉链表,三叉链表。

二叉链表,就是有两个子节点指针的链表,三叉链表就是有两个子节点child指针,还有一个父节点parent指针。二叉链表,应用的比较多。三叉树一般应用在平衡树,红黑树等等。

// 二叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pLeft;   // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType _data; // 当前节点的值
}
// 三叉链
struct BinaryTreeNode
{
    struct BinTreeNode* pParent; // 指向当前节点的父亲
    struct BinTreeNode* pLeft;   // 指向当前节点左孩子
    struct BinTreeNode* pRight; // 指向当前节点右孩子
    BTDataType _data; // 当前节点的值
}

堆(Heap)

堆就是完全二叉树,用数组来储存。

堆的分类

  • 大堆(大根堆)

每个父节点都大于等于子节点。左右孩子大小不规定。

  • 小堆(小根堆)

每个父节点都小于等于子节点。左右孩子大小不规定。

大根堆和小根堆的作用

根(堆顶)是最大值或最小值。应用在堆排序中。

例题:

1.下列关键字序列为堆的是:(A)
A 100,60,70,50,32,65
B 60,70,65,50,32,100
C 65,100,70,32,50,60
D 70,65,100,32,50,60
E 32,50,100,70,65,60
F 50,100,70,65,60,32

二叉树的遍历

由于二叉树是一个非线性结构,不同于以往的单链表或者数组,只能从头到尾,或者从尾到头的遍历顺序。

二叉树可分为左子树、右子树、根三部分。根据三个部分的先后顺序划分,有三种分法:

  1. 前序(先根遍历):根->左子树->右子树
  2. 中序(中根遍历):左子树->根->右子树
  3. 后序(后根遍历):左子树->右子树->根

DFS和BFS

深度优先搜索算法(英语:Depth-First-Search,DFS)是一种用于遍历或搜索树或图的算法。其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个结点只能访问一次.

因发明「深度优先搜索算法」,约翰 · 霍普克洛夫特与罗伯特 · 塔扬在1986年共同获得计算机领域的最高奖:图灵奖。

广度优先搜索算法(Breadth-First Search,缩写为 BFS),又称为宽度优先搜索,是一种图形搜索算法。简单的说,BFS 是从根结点开始,沿着树的宽度遍历树的结点。如果所有结点均被访问,则算法中止。

又因为二叉树结构的特殊性,有层数之分,根据探索的层数有两种分法:深度优先遍历,广度优先遍历

其中深度优先遍历就是:前中后序这三种方式

广度优先遍历层序。所谓的层序就是一层层的挨着访问。从左到右。

请添加图片描述

举个例子:

  1. 前序:A->B->D->NULL->NULL->E->NULL->NULL->C->NULL->NULL

    一般方便表示,不会写NULL,也就是ABDEC.

  2. 中序:NULL->D->NULL->B->NULL->E->NULL->A->NULL->C->NULL

  3. 后序:NULL->NULL->D->NULL->NULL->E->B->NULL->NULL->C->A

  4. 层序:A->B->C->D->E->NULL->NULL->NULL->NULL->NULL->NULL

请添加图片描述

大概是什么意思呢?拿中序来说,拿到这棵树,第一个节点也就是根,但是不会访问他的值,因为中序访问就是先访问左子树,对于A这棵树而言,左子树是以B为根的子树,但是这时候不能访问B的值,因为对于B而言,D才是B的左子树,对于D而言,左子树为空,返回NULL(这也就是中序第一个NULL的来源)。然后返回D节点,D是以D为根的子树的根,D的左子树已经访问完了,所以要访问D,然后访问D这棵树的右子树,右子树还是空,返回NULL。以D为根的子树才彻底访问完毕。D又是B的左子树,以B为根的子树的左子树访问完,才访问根B的值。接着是B的右子树E。以E为根的子树还要先访问左子树。。。。。。。

不难发现,中序是先沿着左子树这条路,一直找到了D的左子树NULL才停止访问。然后返回上级D这条岔路口走右子树。再返回D的上级B岔路口走右子树。

随着程序的运行,一开始就先找最深的地方,也就是深度优先遍历。走到空,无路可走了,才退回来。

所以深度优先适合数组、图,这种量大的遍历。

实现深度优先一般用递归,栈

实现广度优先用队列。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/661140.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【CALayer-时钟练习-CADisplayLink Objective-C语言】

一、我们接着来看,这个CADisplayLink啊, 1.刚才我们说那个时间呢,差上1秒钟的样子,然后呢,我们现在呢,用这个叫做CADisplayLink的东西,来解决,用这个类,来解决啊, 我们说,NSTimer,是跑到这儿了以后,一秒钟以后, 它才会执行,这个timeChange方法,真正的时间,不…

同比和环比

1、概述 同比和环比是两种常见的数据分析方法&#xff0c;用于衡量数据在不同时间段的变化情况。通过同比和环比的计算&#xff0c;可以更清晰地了解数据在不同时间段的增长或下降情况&#xff0c;从而为决策提供依据。 2、同比 同比&#xff08;Year-on-Year, YoY&#xff09…

618手把手教你捡漏服务器

618最全捡漏攻略 捡漏规则1、新人优惠⭐⭐⭐2、教育优惠⭐⭐3、回馈活动⭐️ ECS价格对比新人优惠&#x1f49d;京东云 50/年百度云 60.69/年阿里云 82/年腾讯云 99/年 回馈活动&#x1f381;阿里云 教育优惠&#x1f3eb;阿里云腾讯云 hi&#xff0c;好久不见各位&#xff0c;…

【408真题】2009-27

“接”是针对题目进行必要的分析&#xff0c;比较简略&#xff1b; “化”是对题目中所涉及到的知识点进行详细解释&#xff1b; “发”是对此题型的解题套路总结&#xff0c;并结合历年真题或者典型例题进行运用。 涉及到的知识全部来源于王道各科教材&#xff08;2025版&…

Debug - nacos配置 第二弹

好的 又是一个蠢蠢的 nacos 配置上出现的问题 在使用 nacos 进行 配置共享时 报错 Description: Failed to configure a DataSource: ‘url’ attribute is not specified and no embedded datasource could be configured. Reason: Failed to determine a suitable driver c…

分割、合并字符串

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 在Python中&#xff0c;字符串对象提供了分割和合并字符串的方法。分割字符串是把字符串分割为列表&#xff0c;而合并字符串是把列表合并为字符串&a…

JVM之性能优化

1.JVM优化什么 由博客JVM之垃圾回收-CSDN博客我们已经了解到了数据存储是在方法区和堆区&#xff0c;而堆区的使用更为频繁。堆区有什么呢?老年代、新生代、GC。因此JVM性能优化&#xff0c;优化什么&#xff1f; 我们猜想一下&#xff0c;新生代的大小设置&#xff1b;老年代…

STM32-GPIO八种输入输出模式

图片取自 江协科技 STM32入门教程-2023版 细致讲解 中文字幕 p5 【STM32入门教程-2023版 细致讲解 中文字幕】 https://www.bilibili.com/video/BV1th411z7sn/?p5&share_sourcecopy_web&vd_source327265f5c70f26411a53a9226af0b35c 目录 ​编辑 一.STM32的四种输…

5个免费下载音乐的网站,喜欢听什么就搜什么

以下5个音乐下载网站&#xff0c;中国人不骗中国人&#xff0c;全部免费。个个曲库丰富&#xff0c;喜欢听什么就搜什么&#xff0c;还能下载mp3格式&#xff0c;点赞收藏即刻拥有&#xff01; 1、MyFreeMP3 tools.liumingye.cn/music/ MyFreeMP3是一个提供音乐播放和下载服…

微信加好友的方式有哪些?如何快捷自动回复?

微信加好友的方式&#xff1a; 1、通信录导入根据微信号综合评分&#xff0c;24小时只能加15-25位好友。即使超出了25个&#xff0c;添加后显示发送验证成功&#xff0c;对方也收不到你的验证信息&#xff0c;你手上有千万个老客户的手机号也没用。 2、查找添加10小时智能查找…

Leecode热题100---二分查找--4:寻找两个正序数组的中位数

题目&#xff1a; 给定两个大小分别为 m 和 n 的正序&#xff08;从小到大&#xff09;数组 nums1 和 nums2。请你找出并返回这两个正序数组的 中位数 。 解法1、暴力解法&#xff08;归并&#xff09; 思路&#xff1a; 合并 nums1&#xff0c;nums2 为第三个数组 排序第三个数…

F. Longest Strike[双指针详解]

Longest Strike 题面翻译 给你一个长度为 n n n 的序列 a a a 和一个整数 k k k&#xff0c;你要求一个区间 [ l , r ] [l,r] [l,r] 满足&#xff1a; 对于任何整数 x ∈ [ l , r ] x∈[l,r] x∈[l,r]&#xff0c; x x x 在 a a a 中的出现次数不少于 k k k 次。最大…

Linux: network: tcp spurious retrans 的一个原因

最近分析问题的时候&#xff0c;从wireshark里看有&#xff1a;tcp spurious retrans 的包&#xff0c;309这个是307 的retransmission&#xff0c;而且在308 回复了ACK。那为什么会重传&#xff1f; 从网上找了一些&#xff0c;比如 https://www.packetsafari.com/blog/2021…

IEEE Latex模版踩雷避坑指南

参考文献 原Latex模版 \begin{thebibliography}{1} \bibliographystyle{IEEEtran}\bibitem{ref1} {\it{Mathematics Into Type}}. American Mathematical Society. [Online]. Available: https://www.ams.org/arc/styleguide/mit-2.pdf\bibitem{ref2} T. W. Chaundy, P. R. Ba…

IO系列(十) -TCP 滑动窗口原理解析

一、摘要 之前在知乎上分享网络编程知识文章的时候&#xff0c;有个网友私信给我留言了一条“能不能写一篇关于 TCP 滑动窗口原理的文章”。 当时没有立即回复&#xff0c;经过查询多方资料&#xff0c;发现这个 TCP 真的非常非常的复杂&#xff0c;就像一个清澈的小沟&#…

Java版招投标管理系统源码:优化流程,提升效率,实现全方位项目管理

在现今日益竞争激烈的招标市场中&#xff0c;企业需要一款强大而灵活的招投标管理系统来优化流程、提升效率。我们的招投标管理系统正是为此而生&#xff0c;它集门户管理、立项管理、采购项目管理、公告管理、考核管理、报表管理、评审管理、企业管理、采购管理和系统管理等多…

使用 MySQL 触发器 + 统计学生表实时计算表数据量

要使用 MySQL 触发器实时计算表数据量&#xff0c;您可以创建一个触发器&#xff0c;当插入、更新或删除学生表的数据时&#xff0c;触发器就会更新另一个表中保存的学生表数据量信息。以下是一个示例&#xff1a; 首先&#xff0c;假设您有一个名为 students 的学生表&#x…

MS Excel: 高亮当前行列 - 保持原有格式不被改变

本文使用条件格式VBA的方法实现高亮当前行列&#xff0c;因为纯VBA似乎会清除原有的高亮格式。效果如下&#xff1a;本文图省事就使用同一种颜色了。 首先最重要的&#xff0c;【选中你期望高亮的单元格区域】&#xff0c;比如可以全选当前sheet的全部区域 然后点击【开始】-【…

【LeetCode算法】第94题:二叉树的中序遍历

目录 一、题目描述 二、初次解答 三、官方解法 四、总结 一、题目描述 二、初次解答 1. 思路&#xff1a;二叉树的中序遍历。访问二叉树的左子树&#xff0c;再访问二叉树的根节点&#xff0c;最后访问二叉树的右叉树。 2. 代码&#xff1a; void order(struct TreeNode* r…

JDBC使用步骤-小白入门

一.JDBC开发流程 加载并注册JDBC驱动创建数据库连接创建Statement对象遍历查询结果关闭连接,释放资源 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement;public class StandardJDBCSample {public static …