【哈希】闭散列的线性探测和开散列的哈希桶解决哈希冲突(C++两种方法模拟实现哈希表)(2)

图片名称
🎉博主首页: 有趣的中国人

🎉专栏首页: C++进阶

🎉其它专栏: C++初阶 | Linux | 初阶数据结构

在这里插入图片描述

小伙伴们大家好,本片文章将会讲解 哈希函数与哈希 之 哈希桶解决哈希冲突 的相关内容。

如果看到最后您觉得这篇文章写得不错,有所收获,麻烦点赞👍、收藏🌟、留下评论📝。您的支持是我最大的动力,让我们一起努力,共同成长!

🎉系列文章: 1. 闭散列的线性探测实现哈希表

文章目录

  • `0. 前言`
  • `1. 何为开散列`
    • ==<font color = blue><b>🎧1.1 开散列的概念🎧==
    • ==<font color = blue><b>🎧1.2 开散列哈希表图示🎧==
  • `2. 开散列哈希表的实现`
    • ==<font color = blue><b>🎧2.1 开散列哈希表的结构🎧==
    • ==<font color = blue><b>🎧2.2 哈希桶插入Insert🎧==
    • ==<font color = blue><b>🎧2.3 哈希桶查找Find🎧==
    • ==<font color = blue><b>🎧2.4 哈希桶删除Erase🎧==
  • `3. 字符串哈希与仿函数`
  • `4.哈希桶实现哈希表完整代码`



0. 前言


在上一篇文章中我们详细描述了如何用 开放寻址法(闭散列)的线性探测 的方法来实现哈希表。此篇文章我们将用 开散列的哈希桶 来实现哈希表。




1. 何为开散列


🎧1.1 开散列的概念🎧


开散列法又叫链地址法(开链法)首先对关键码集合用 散列函数计算散列地址具有相同地址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链接起来各链表的头结点存储在哈希表中。

🎧1.2 开散列哈希表图示🎧


在这里插入图片描述

插入元素44

在这里插入图片描述

从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。




2. 开散列哈希表的实现


🎧2.1 开散列哈希表的结构🎧


很明显,这个哈希表中存储了一个指针数组,我们可以用vector来实现,数组中的每个位置存储了一个节点类型的指针每个节点相当于是链表的一个节点,即:节点中有一个链表类型的指针,还有一个存放值的位置。

哈希节点和哈希表结构代码:

// 定义节点类型
template<class K, class V>
struct HashNode
{
	// 存储值的位置
	pair<K, V> _kv;
	// 节点类型指针
	HashNode<K, V>* _next;

	HashNode(const pair<K,V>& kv)
		:_kv(kv)
		,_next(nullptr)
	{}
};

// 定义哈希表,第三个模板类型是仿函数,上一篇文章讲过
template<class K, class V, class HashFunc = HashFunc<K>>
class HashTable
{
public:
	typedef HashNode<K, V> Node;

	HashTable(size_t n = 10)
	{
		_tables.resize(n);
	}
private:
	// 指针数组
	vector<Node*> _tables;
	// 存储的元素个数
	size_t _n = 0;
};

🎧2.2 哈希桶插入Insert🎧


插入元素的思路:

  1. 利用 哈希函数 计算出 要插入的值应该存放在哪个桶里面
  2. 之后在对应的桶中进行链表的头插:
    • 首先new一个哈希表的节点newnode
    • newnode->_next= _tables[i]
    • 再让newnode当作头:_tables[i] = newnode
  3. ++_n

关于哈希桶的扩容:

在线性探测中,当负载因子 load_factor 0.75 0.75 0.75 左右的时候就要进行扩容,但是在哈希桶中,我们可以适当让负载因子大一点,在STL库中,哈希桶的扩容是当负载因子等于 1 1 1 的时候进行扩容,即: n = = t a b l e . s i z e ( ) n == table.size() n==table.size()

注意:哈希桶中的负载因子是可以大于1的,因为一个桶中可能存储的不止一个值。


扩容思路1:

我们可以继续利用在线性探测的扩容思路:

  1. 新定义一个HashTable的对象newht,表的容量还是两倍;
  2. 遍历原始的HashTable中的vector _tables
    • 如果_tables[i]不为空,那么就调用newht.Insert()函数;
      • 定义一个节点类型的指针Node* cur = _tables[i]
      • 调用newht.Insert(cur->_kv);
      • 再让cur = cur->_next
    • 如果_tables[i]为空,就让i++
  3. 直到 i == _tables.size(),则newht插入完成;
  4. 最后两个_tables进行交换:_tables.swap(newht._tables)

但是这样扩容虽然可以,但是会很麻烦,因为:

  1. 由于每个哈希节点是new出来的,因此不能直接使用vector的析构函数,要自己写一个析构函数,不然会有内存泄漏;
  2. 每次调用newht.Insert()的时候都会重新new一个节点,原始的节点都会被释放,因此这样操作就会很麻烦编译器。

扩容代码(version1):

// 手动进行析构
~HashTable()
{
	for (size_t i = 0; i < _tables.size(); ++i)
	{
		Node* cur = _tables[i];
		Node* next = nullptr;
		while (cur)
		{
			next = cur->_next;
			delete cur;
			cur = next;
		}
	}
}

// 扩容代码
if (_n == _tables.size())
{
	// 方法1:新定义一个对象
	size_t newsize = 2 * _tables.size();
	HashTable<K, V> newht(newsize);
	for (size_t i = 0; i < _tables.size(); i++)
	{
		Node* cur = _tables[i];
		Node* next = nullptr;
		while (cur)
		{
			next = cur->_next;
			newht.Insert(cur->_kv);
			cur = next;
		}
	}
	_tables.swap(newht._tables);
}

扩容思路2:

  1. 定义一个新表vector newtables,表的容量还是两倍;
  2. 遍历旧表,如果当前位置不为空,在新表中进行插入,思路如下:
    • 定义一个哈希节点指针Node* cur = _tables[i]
    • 通过cur->_kv.first 和 哈希函数 计算出 应该插入到新表的哪个桶中(hashi);
    • 由于插入之后会找不到下一个节点的位置,所以应该再定义一个Node* next = cur->next
    • 在新表中头插cur,还是同样的思路:
      • cur->_next = newtables[hashi]cur的下一个指向原始的头节点);
      • 接着让 newtables[hashi] = cur(让cur当头);
      • 插入完成让cur = next
      • 直到cur == nullptr,说明此桶中的节点都在新表中插入完成;
    • 让旧表中的_tables[i] = nullptr; (这部也可以不做,因为表不会调用析构函数,但是最好还是置空一下)
  3. 如果当前位置为空,则i++
  4. 直到 i == _tables.size(),说明此表的所有元素在新表中插入完成;
  5. 最后两表进行交换:_tables.swap(newtables)

扩容代码(version2):

if (_n == _tables.size())
{
	vector<Node*> newtable;
	// 两倍的旧表容量
	size_t newsize = 2 * _tables.size();
	newtable.resize(newsize);
	for (size_t i = 0; i < _tables.size(); ++i)
	{
		Node* cur = _tables[i];
		Node* next = nullptr;
		while (cur)
		{
			// 记录下一个位置
			next = cur->_next;
			// 计算在新表中的位置
			size_t hashi = cur->_kv.first % newtable.size();
			// cur的下一个位置指向原来的头
			cur->_next = newtable[hashi];
			// cur当头
			newtable[hashi] = cur;
			// 更新cur的位置
			cur = next;
		}
		// 旧表置空
		_tables[i] = nullptr;
	}
	_tables.swap(newtable);
}

完整的插入逻辑代码:

bool Insert(const pair<K, V>& kv)
{
	// 这边就是上一篇文章的仿函数
	HashFunc hf;
	// 查找思路待会实现
	if (Find(kv.first))
	{
		return false;
	}
	// 判断负载因子扩容
	// 负载因子为1扩容
	if (_n == _tables.size())
	{
		// 方法1:新定义一个对象
		/*size_t newsize = 2 * _tables.size();
		HashTable<K, V> newht(newsize);
		for (size_t i = 0; i < _tables.size(); i++)
		{
			Node* cur = _tables[i];
			Node* next = nullptr;
			while (cur)
			{
				next = cur->_next;
				newht.Insert(cur->_kv);
				cur = next;
			}
		}
		_tables.swap(newht._tables);*/

		// 方法2:新定义一个表
		vector<Node*> newtable;
		size_t newsize = 2 * _tables.size();
		newtable.resize(newsize);
		for (size_t i = 0; i < _tables.size(); ++i)
		{
			Node* cur = _tables[i];
			Node* next = nullptr;
			while (cur)
			{
				next = cur->_next;
				size_t hashi = hf(cur->_kv.first) % newtable.size();
				cur->_next = newtable[hashi];
				newtable[hashi] = cur;
				cur = next;
			}
			_tables[i] = nullptr;
		}
		_tables.swap(newtable);
	}
	size_t hashi = hf(kv.first) % _tables.size();
	Node* newnode = new Node(kv);
	// 头插
	newnode->_next = _tables[hashi];
	_tables[hashi] = newnode;
	++_n;
	return true;
}

🎧2.3 哈希桶查找Find🎧


查找实现思路如下:

  1. 根据 key 和 哈希函数计算出对应的桶(hashi);
  2. 在此桶中进行寻找:
    • 定义一个哈希节点类型的指针Node* cur = _tables[hashi]
    • 一直向后寻找,直到找到或者 cur == nullptr(没有此元素)。
    • 找到返回此位置的指针,找不到返回空。

完整的查找逻辑代码:

Node* Find(const K& key)
{
	HashFunc hf;
	// 根据 `key` 和 哈希函数计算出对应的桶(`hashi`)
	size_t hashi = hf(key) % _tables.size();

	Node* cur = _tables[hashi];
	while (cur)
	{
		if (cur->_kv.first == key)
		{
			return cur;
		}
		else
		{
			cur = cur->_next;
		}
	}
	return nullptr;
}

🎧2.4 哈希桶删除Erase🎧


删除实现思路如下:

  1. 根据 key 和 哈希函数计算出对应的桶(hashi);
  2. 在此桶中进行查找,这里要考虑要删除的节点的前一个节点是否为空;
  3. 如果前一个节点不为空,直接让prev->_next = cur->_next
  4. 如果前一个节点为空,就让 _tables[i] = cur->_next
  5. delete cur; cur = nullptr;
  6. 如果一直到 cur == nullptr 最后都未曾找到,则返回false
  7. 最后 --_n

完整的删除逻辑代码:

bool Erase(const K& key)
{
	HashFunc hf;
	//  根据 `key` 和 哈希函数计算出对应的桶(`hashi`);
	size_t hashi = hf(key) % _tables.size();
	Node* cur = _tables[hashi];
	Node* prev = nullptr;
	while (cur)
	{
		if (cur->_kv.first == key)
		{
			// 如果前一个节点为空,就让 `_tables[i] = cur->_next`;
			if (prev == nullptr)
			{
				_tables[hashi] = cur->_next;
			}
			// 如果前一个节点为空,就让 `_tables[i] = cur->_next`
			else
			{
				prev->_next = cur->_next;
			}
			delete cur;
			return true;
		}
		else
		{
			prev = cur;
			cur = cur->_next;
		}
	}
	return false;
}		



3. 字符串哈希与仿函数


字符串哈希我们上一篇文章讲过::

  1. 当我们插入数字的类型,例如:double、float、int、 char、unsigned用的是一种类型的哈希函数
  2. 当我们插入字符串类型string的时候用的是另一种类型的哈希函数
  3. 🔎遇到这种情况的时候我们一般用仿函数来解决问题!!!🔍

因此我们要加一个仿函数的模板参数:class HashFunc

对于数字类型的仿函数代码:

template<class K>
struct Hash
{
	size_t operator()(const K& key)
	{
		// 强转即可
		return (size_t)key;
	}
};

对于string类型的仿函数代码:

这里先写一下,待会再细谈:

struct StringFunc
{
	size_t operator()(const string& str)
	{
		size_t ret = 0;
		for (auto& e : str)
		{
			ret *= 131;
			ret += e;
		}
		return ret;
	}
};

由于string类型的哈希我们经常用,因此可以用模板的特化,并将此模板用缺省参数的形式传递,这样我们就不用在每次用的时候传入仿函数了。

template<class K>
struct Hash
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

template<>
struct Hash<string>
{
	size_t operator()(const string& str)
	{
		size_t ret = 0;
		for (auto& e : str)
		{
			ret *= 131;
			ret += e;
		}
		return ret;
	}
};




4.哈希桶实现哈希表完整代码



🎧有需要的小伙伴自取哈,博主已经检测过了,无bug🎧

🎨博主gitee链接: Jason-of-carriben 哈希桶实现哈希表完整代码

在这里插入图片描述

#pragma once
#include <iostream>
#include <vector>
using namespace std;

template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

template<>
struct HashFunc<string>
{
	size_t operator()(const string& str)
	{
		size_t hash_value = 0;
		for (auto& e : str)
		{
			hash_value = hash_value * 131 + e;
		}
		return hash_value;
	}
};


namespace hash_bucket
{
	template<class K, class V>
	struct HashNode
	{
		pair<K, V> _kv;
		HashNode<K, V>* _next;

		HashNode(const pair<K,V>& kv)
			:_kv(kv)
			,_next(nullptr)
		{}
	};

	template<class K, class V, class HashFunc = HashFunc<K>>
	class HashTable
	{
	public:
		typedef HashNode<K, V> Node;

		HashTable(size_t n = 10)
		{
			_tables.resize(n);
		}

		~HashTable()
		{
			for (size_t i = 0; i < _tables.size(); ++i)
			{
				Node* cur = _tables[i];
				Node* next = nullptr;
				while (cur)
				{
					next = cur->_next;
					delete cur;
					cur = next;
				}
			}
		}

		bool Insert(const pair<K, V>& kv)
		{
			HashFunc hf;
			if (Find(kv.first))
			{
				return false;
			}
			// 判断负载因子扩容
			// 负载因子为1扩容
			if (_n == _tables.size())
			{
				// 方法1:新定义一个对象
				/*size_t newsize = 2 * _tables.size();
				HashTable<K, V> newht(newsize);
				for (size_t i = 0; i < _tables.size(); i++)
				{
					Node* cur = _tables[i];
					Node* next = nullptr;
					while (cur)
					{
						next = cur->_next;
						newht.Insert(cur->_kv);
						cur = next;
					}
				}
				_tables.swap(newht._tables);*/

				// 方法2:新定义一个表
				vector<Node*> newtable;
				size_t newsize = 2 * _tables.size();
				newtable.resize(newsize);
				for (size_t i = 0; i < _tables.size(); ++i)
				{
					Node* cur = _tables[i];
					Node* next = nullptr;
					while (cur)
					{
						next = cur->_next;
						size_t hashi = hf(cur->_kv.first) % newtable.size();
						cur->_next = newtable[hashi];
						newtable[hashi] = cur;
						cur = next;
					}
					_tables[i] = nullptr;
				}
				_tables.swap(newtable);
			}
			size_t hashi = hf(kv.first) % _tables.size();
			Node* newnode = new Node(kv);
			// 头插
			newnode->_next = _tables[hashi];
			_tables[hashi] = newnode;
			++_n;
			return true;
		}

		Node* Find(const K& key)
		{
			HashFunc hf;

			size_t hashi = hf(key) % _tables.size();

			Node* cur = _tables[hashi];
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					return cur;
				}
				else
				{
					cur = cur->_next;
				}
			}
			return nullptr;

			/*for (size_t i = 0; i < _tables.size(); i++)
			{
				Node* cur = _tables[i];
				Node* next = nullptr;
				while (cur)
				{
					next = cur->_next;
					if (cur->_kv.first == key)
					{
						return cur;
					}
					else
					{
						cur = next;
					}
				}
			}
			return nullptr;*/
		}

		bool Erase(const K& key)
		{
			HashFunc hf;

			size_t hashi = hf(key) % _tables.size();
			Node* cur = _tables[hashi];
			Node* prev = nullptr;
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					if (prev == nullptr)
					{
						_tables[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}
					delete cur;
					return true;
				}
				else
				{
					prev = cur;
					cur = cur->_next;
				}
			}
			return false;
			//for (size_t i = 0; i < _tables.size(); ++i)
			//{
			//	Node* prev = nullptr;
			//	Node* cur = _tables[i];
			//	//Node* next = nullptr;
			//	while (cur)
			//	{
			//		if (cur->_kv.first == key)
			//		{
			//			if (prev == nullptr)
			//			{
			//				_tables[i] = cur->_next;
			//			}
			//			else
			//			{
			//				prev->_next = cur->_next;
			//			}
			//			delete cur;
			//			return true;
			//		}
			//		else
			//		{
			//			prev = cur;
			//			cur = cur->_next;
			//		}
			//	}
			//}
			//return false;
		}



	private:
		vector<Node*> _tables;
		size_t _n = 0;
	};
	void HashTest1()
	{
		int a[] = { 10001,11,55,24,19,12,31,93,67,26 };
		HashTable<int, int> ht;
		for (auto e : a)
		{
			ht.Insert(make_pair(e, e));
		}

		ht.Insert(make_pair(32, 32));
		//ht.Insert(make_pair(32, 32));
		ht.Erase(31);
		ht.Erase(10001);

	}

	void HashTest2()
	{
		string arr[] = { "苹果", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜",
	"苹果", "香蕉", "苹果", "香蕉","苹果","草莓", "苹果","草莓" };
		HashTable<string, string> countMap;
		for (auto& e : arr)
		{
			countMap.Insert(make_pair(e, e));
		}
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/658220.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用 Python 和 jieba 实现中文文本中的人名和公司名提取

在处理中文文本时&#xff0c;经常需要从中提取出人名和公司名称。比如在文本分析、信息提取和自然语言处理&#xff08;NLP&#xff09;等领域&#xff0c;这些任务都非常常见。本文将介绍如何使用wxPython创建一个简单的桌面应用程序&#xff0c;从一段中文长文中提取人名和公…

150.二叉树:二叉树的后序遍历(力扣)

代码解决 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr, right(nullptr) {}* Tree…

电脑下载了caj却打不开文献?使用CAJ阅读器,支持caj转word

如果电脑下载了CAJ文件却打不开文献&#xff0c;这通常是因为没有安装合适的阅读器。CAJ文件是中国知网的一种专用全文阅读格式&#xff0c;需要使用专门的CAJ阅读器&#xff08;CAJViewer&#xff09;来打开和阅读。 首先&#xff1a;使用CAJ阅读器 请确保你已经正确安装了CA…

【机器学习】解锁AI密码:神经网络算法详解与前沿探索

&#x1f440;传送门&#x1f440; &#x1f50d;引言&#x1f340;神经网络的基本原理&#x1f680;神经网络的结构&#x1f4d5;神经网络的训练过程&#x1f686;神经网络的应用实例&#x1f496;未来发展趋势&#x1f496;结语 &#x1f50d;引言 随着人工智能技术的飞速发…

【python】生成对抗网络(GAN):理论与PlugLink实践

【python】生成对抗网络&#xff08;GAN&#xff09;&#xff1a;理论与PlugLink实践 本文将介绍一种流行的图像生成技术——生成对抗网络&#xff08;GAN&#xff09;&#xff0c;并结合PlugLink平台&#xff0c;展示如何将这一技术应用于实际项目中。简单来说&#xff0c;它…

查看远程桌面连接登录不上服务器,远程桌面连接登录不上服务器是什么情况?怎么解决?

在信息技术领域&#xff0c;远程桌面连接&#xff08;RDP&#xff09;是一种重要的远程管理工具&#xff0c;它允许管理员或用户从远程位置访问和控制服务器或计算机。然而&#xff0c;在实际操作中&#xff0c;远程桌面连接不上服务器的情况时有发生&#xff0c;这通常是由多种…

excel数据丢失怎么办?表格文件恢复的3个方法

Excel作为一个常用的表格文件&#xff0c;我们在工作中经常都需要用到它。最令人崩溃的事就是有时候我们辛辛苦苦用Excel完成了工作&#xff0c;但是突然发现Excel数据丢失。这可怎么办呢&#xff1f;如何找回丢失的Excel数据&#xff1f;下面小编就分享几种恢复办法。 方法一&…

【LLM第7篇】transformer跟bert、gpt、大模型的联系

上一篇讲了transformer的原理&#xff0c;接下来&#xff0c;看看它的衍生物们。 Transformer基本架构 Transformer模型主要由两部分组成&#xff1a;编码器&#xff08;Encoder&#xff09;和解码器&#xff08;Decoder&#xff09;。编码器负责处理输入序列&#xff0c;将其…

如何使用OCR批量提取短剧和电视剧内的字幕?

为什么使用光字符识别 (OCR) 提取视频字幕&#xff1f; 视频字幕提取是将视频中的字幕转换为 SRT 格式文本的过程。传统方法是使用自动语音识别 (ASR) 技术&#xff0c;但对于某些类型的视频&#xff08;例如短剧、电视剧、电影、访谈等节目&#xff09;&#xff0c;由于这类型…

想让企业“火力全开”?找六西格玛培训公司就对了!

在如今的市场环境中&#xff0c;企业面临着不断变化的挑战和无限的可能。要在这场竞争中独领风骚&#xff0c;实现稳健的增长&#xff0c;六西格玛作为一种以数据驱动的管理理论&#xff0c;提供了实际可行的解决方案。六西格玛培训公司&#xff0c;作为这一领域的专家&#xf…

maven聚合工程整合springboot+mybatisplus遇到的问题

前言&#xff08;可以直接跳过看下面解决方法&#xff09; 项目结构 两个module&#xff1a; yema-terminal-boot 是springboot项目&#xff0c;子包有&#xff1a;controller、service、dao 等等。属于经典三层架构。那么&#xff0c;该module可以理解为是一个单体项目&…

如何关闭MySQL凌晨12点自动弹窗?

要关闭 MySQL 在凌晨 12 点自动弹窗的行为&#xff0c;首先需要确定弹窗的具体原因。 打开“任务计划程序”&#xff1a; 按 Win R&#xff0c;输入 taskschd.msc&#xff0c;然后按 Enter。 在左侧导航栏中&#xff0c;选择“任务计划程序库”。 查找与 MySQL 相关的任务&…

嵌入式进阶——矩阵键盘

&#x1f3ac; 秋野酱&#xff1a;《个人主页》 &#x1f525; 个人专栏:《Java专栏》《Python专栏》 ⛺️心若有所向往,何惧道阻且长 文章目录 矩阵按键原理图按键状态检测单行按键状态检测多行按键状态检测 状态记录状态优化循环优化 矩阵按键 矩阵键盘是一种常见的数字输入…

【C++题解】1321. 时钟旋转(2)

问题&#xff1a;1321. 时钟旋转&#xff08;2&#xff09; 类型&#xff1a;字符串 题目描述&#xff1a; 时钟从时间&#xff1a;xx:xx&#xff08;xx时xx分&#xff09;&#xff0c;走到时间&#xff1a;xx:xx&#xff08;xx时xx分&#xff09;&#xff0c;时针共旋转了多…

openresty(Nginx) 隐藏 软件包名称 版本号 升级新版本

1 访问错误或者异常的URL 2 修改配置&#xff0c;重新编译&#xff0c;升级 #修改版本等 vim ./bundle/nginx-1.13.6/src/core/nginx.h #define nginx_version 1013006 #define NGINX_VERSION "1.13.6" #define NGINX_VER "openresty/&q…

2024年软件设计师备考复习资料(应用技术)

应用设计&#xff0c;考试时间为120分钟&#xff1b;总共需做5道题&#xff0c;满分75分&#xff08;每题15分&#xff09;。前4题为必答题&#xff0c;最后2题为要求选答一题&#xff08;C或Java&#xff09;&#xff0c;45及格 目录 1. 数据流图&#xff08;需求分析&#…

APM 2.8外置罗盘校准

请注意&#xff1a; GPS不可以飞控带电插拔&#xff0c;带电插拔会产生差分电压&#xff0c;可能会导致GPS模块损坏&#xff0c;无法搜星。不听劝告&#xff0c;后果自负&#xff01; 1.如何接线 GPS有两根线&#xff0c;要插上面图所示的两个接口。同时拔掉旁边的跳线帽&…

1806 jsp防疫物资销售管理系统 Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 jsp 防疫物资销售管理系统 是一套完善的web设计系统&#xff0c;对理解JSP java编程开发语言有帮助采用了java设计&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统采用web模式&#xff0c;系统主要采用B/S模式开发。开发环境为TOMCAT7.0,Myeclipse8.…

LabVIEW车轮动平衡检测系统

LabVIEW车轮动平衡检测系统 随着汽车行业的快速发展&#xff0c;车轮动平衡问题对乘坐舒适性、操控稳定性及安全性的影响日益凸显&#xff0c;成为了提高汽车性能的一个关键环节。传统的检测系统因精度低、成本高、操作复杂等问题&#xff0c;难以满足现代汽车行业的需求。开发…

如何理解Spring Boot自动配置原理和应用?

我们知道&#xff0c;基于Spring Boot&#xff0c;我们只需要在类路径中引入一组第三方框架的starter组件&#xff0c;就能在Spring容器中使用这些框架所提供的各项功能。这在当下的开发过程中已经习以为常&#xff0c;但在Spring Boot还没有诞生之前却是不可想象的。如果我们使…