AI架构设计7:TGI

这个专栏主要关注围绕着AI运用于实际的业务场景所需的系统架构设计。整体基于云原生技术,结合开源领域的LLMOps或者MLOps技术,充分运用低代码构建高性能、高效率和敏捷响应的AI中台。该专栏需要具备一定的计算机基础。

若在某个环节出现卡点,可以回到大模型必备腔调重新阅读。而最新科技(Mamba,xLSTM,KAN)则提供了大模型领域最新技术跟踪。若对于构建生产级别架构则可以关注AI架构设计专栏。技术宅麻烦死磕LLM背后的基础模型。

训练大型语言模型以及微调的教程比比皆是,但关于在生产环境中部署它们并监控其活动的资料相对稀缺。上个章节提到了未来云原生的AI是趋势,然而涉及到云原生会比较偏技术。而在此之前为了解决大模型部署量产的问题,社区也一直在探索,目前已经有不少的工具可用于这个领域。

今天挑选几个颇具特色的主流部署工具来谈谈,例如vLLM、LLAMA.cpp 和TGI等工具,它们各自都提供各自的部署模式,本文对于数据分析师乃至数据科学家,还是刚接触AI部署的新兵,相信可以为读者打开一扇窗户进行快速的了解。

TGI

Text Generation Inference (TGI) is a toolkit for deploying and serving Large Language Models (LLMs). TGI enables high-performance text generation for the most popular open-source LLMs, including Llama, Falcon, StarCoder, BLOOM, GPT-NeoX, and T5.  —HuggingFace

Huggingface TGI是一个用Rust和Python编写的框架,用于部署和提供大型语言模型。它根据HFOILv1.0许可证允许商业使用,前提是它作为所提供产品或服务中的辅助工具。

目前TGI是一个用于部署和服务大型语言模型 (LLM) 的工具包。TGI 为最流行的开源 LLM 提供高性能文本生成,包括 Llama、Falcon、StarCoder、BLOOM、GPT-NeoX 和 T5。

TGI的几项关键技术:

  • 支持张量并行推理

  • Safetensors格式的权重加载

该存储库实现了一种新的简单格式,用于安全地存储张量(而不是 pickle格式),并且在零复制的前提下保持高速。

上图对比了几种格式,从左到右分别为,“是否安全”、“零拷贝”、“延迟加载”、“文件大小限制”、“布局控制”、“灵活度”和“对于BF16和Fp8的支持”

  • 支持传入请求Continuous batching以提高总吞吐量

  • 在主流的模型架构上使用FlashAttention和PagedAttention用于推理的transformers代码优化。!!并非所有模型都支持这些优化

  • 使用bitsandbytes(LLM.int8())和GPT-Q进行量化

  • 支持Logits warper

一种对逻辑(logits)进行变换或调整的方法。模型在分类问题中输出的未归一化的概率分布,通常利用softmax将其转换为概率分布。Logits warper包括多种技术,如温度(temperature scaling)、top-p抽样、top-k抽样、重复惩罚等,可以用来调整模型输出。

  • 支持微调

目前TGI支持的大模型清单如下,当然也可以部署自定义的模型,只不过性能就未必那么好了。

Llama

Phi 3

Gemma

Cohere

Dbrx

Mamba

Mistral

Mixtral

Gpt Bigcode

Phi

Falcon

StarCoder 2

Baichuan

Qwen 2

Opt

T5

Galactica

SantaCoder

Bloom

Mpt

Gpt2

Gpt Neox

Idefics (Multimodal)

Idefics 2 (Multimodal)

Llava Next (Multimodal)

架构与启动

TGI的架构并不复杂,左侧为Web Server,右侧为GPU集群的调度。双方通过gRPC进行通讯,而GPU之间的通讯协议为NCLL。

TGI支持本地部署和Docker启动,实验环境可以直接用docker命令,而在产线环境建议直接采用云原生部署。

docker run --gpus all --shm-size 1g \    #可以事先下载好模型    -p 8080:80 -v $PWD/$MODEL_PATH:/$MODEL_PATH \    #用于存储下载模型转换Safetensors格式后的权重    -v $PWD/data:/data \     ghcr.io/huggingface/text-generation-inference \    --model-id /$MODEL_PATH

启动完毕之后,可以利用Python来访问,(前提是机器的显卡已经完成正确的安装和配置)

import jsonimport requestsurl = "http://localhost:8080/generate"params = {    "inputs": "Hello, lubanmocui! ",    "parameters": {        "best_of": 1,        "details": True,        "return_full_text": True,        "decoder_input_details": True,        "truncate": 10,         "max_new_tokens": 128,        "stop": ["\n", "."],        "do_sample": True,        "temperature": 0.8,        "top_k": 10,        "top_p": 0.95,    },}response = requests.post(url, json=params)result = json.loads(response .text)print(result)

若是显卡的配置不给力的话,还可以通过--quantize的参数设置来解决,TGI会自动对模型进行量化操作。

  • bitsandbytes 8-Bit 量化,速度偏慢,但是被支持得最广泛的

  • bitsandbytes-nf4 4-Bit 量化,大部分的模型都可以直接使用,采用了BNB-NF4的量化方案

  • bitsandbytes-fp4 4-Bit 量化,和BNB-NF4类似,但是使用标准的4-Bit浮点数类型

  • gptq 4-Bit 量化,只能在做过GPTQ Post Training的模型

  • awq 4-Bit 量化,类似GPTQ

  • eetq 8-Bit 量化

当然还有一些其他的参数配置:

docker run --gpus all --shm-size 1g \    -p 8080:80 -v $PWD/data:/data \    ghcr.io/huggingface/text-generation-inference:latest \    --model-id model-ids \    --quantize bitsandbytes-nf4 \    --max-best-of 1 \    --max-concurrent-requests 128 \    --max-input-length 3000 \    --max-total-tokens 4000 \    --max-batch-prefill-tokens 12000

vLLM适用于需要高效内存管理和并行计算的大规模语言模型推理,特别是在资源受限的环境中表现优秀。其主要优势在于高效的内存使用和灵活的并行处理能力,但需要细致的配置和优化。而TGI则专注于提升文本生成任务的推理速度,适用于需要高效文本生成的应用场景。其主要优势在于推理速度优化和模型压缩,但主要针对特定任务进行优化,量化可能会影响模型精度。选择哪一个系统取决于具体的应用需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/653675.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(2023|EMNLP,RWKV,Transformer,RNN,AFT,时间依赖 Softmax,线性复杂度)

RWKV: Reinventing RNNs for the Transformer Era 公众号:EDPJ(进 Q 交流群:922230617 或加 VX:CV_EDPJ 进 V 交流群) 目录 0. 摘要 2. 背景 2.1 循环神经网络 (RNN) 2.2 Transformer 和 AFT 3. RWKV 3.1 架构 …

零拷贝(Zero Copy)

目录 零拷贝(Zero Copy) 1.什么是Zero Copy? 2.物理内存和虚拟内存 3.内核空间和用户空间 4.Linux的I/O读写方式 4.1 I/O中断原理 4.2 DMA传输原理 5.传统I/O方式 5.1传统读操作 5.2传统写操作 6.零拷贝 6.1.用户态直接IO 6.2.mmapwrite …

The First项目报告:解读去中心化衍生品交易所AVEO

2023 年12月8日凌晨,Solana 生态 MEV 基础设施开发商 Jito Labs 开放了 JTO 空投申领窗口,JTO 的价格在开盘短暂震荡后迅速攀高,一度触及 4.94 美元。 JTO 是加密社区这两日关注的热门标的,而在这场讨论中,除 Solana …

unity接入live2d

在bilibili上找到一个教程,首先注意一点,你直接导入那个sdk,并且打开示例,显示的模型是有问题的,你需要调整模型上脚本的一个枚举值,调整它的渲染顺序是front z to我看教程时候,很多老师都没有提…

python max_min标准化

python max_min标准化 max_min标准化sklearn实现max_min标准化手动实现max_min标准化 max_min标准化 Max-Min标准化(也称为归一化或Min-Max Scaling)是一种将数据缩放到特定范围(通常是0到1)的标准化方法。这种方法通过线性变换将…

【软考】下篇 第14章 云原生架构设计与理论实践

目录 一、云原生架构定义二、云原生架构原则三、云原生架构主要架构模式3.1 服务化架构模式3.2 Mesh化架构模式3.3 Serverless模式3.4 存储计算分离模式3.5 分布式事务模式4.6 可观测架构3.7 事件驱动架构 四、云原生架构反模式五、云原生架构技术5.1 容器技术容器编排K8S 5.2 …

Elasticsearch 分析器的高级用法二(停用词,拼音搜索)

Elasticsearch 分析器的高级用法二(停用词,拼音搜索) 停用词简介停用词分词过滤器自定义停用词分词过滤器内置分析器的停用词过滤器注意,有一个细节 拼音搜索安装使用相关配置 停用词 简介 停用词是指,在被分词后的词…

【umi-max】初识 antd pro

修改端口号 根目录下的 .env 文件: PORT8888目录结构 (umijs.org) 新增页面 在 umirc.ts 中进行配置。 新增页面 - Ant Design Pro 这里有一个配置 icon:string,可以在菜单加 icon 图标,默认使用 antd 的 icon 名,默认不适用二…

Yourpassword does not satisfy the current policyrequirements

mysql 新增数据库用户失败 解决方法: 修改校验密码策略等级 set global validate_password.policyLOW;

【K8s】专题四(1):Kubernetes 控制器简介

以下内容均来自个人笔记并重新梳理,如有错误欢迎指正!如果对您有帮助,烦请点赞、关注、转发!欢迎扫码关注个人公众号! 目录 一、基本概念 二、工作原理 三、常见类型 四、相关特性 一、基本概念 Kubernetes 控制器…

js中金额进行千分以及toFixed()保留两位小数丢失精度的问题

1、金额进行千分 function commafy(num) { if ((num "").trim() "") { return ""; } if (isNaN(num)) { return ""; } num num ""; if (/^.*\..*$/.test(num)) { const pointIndex num.lastIndexOf("."); co…

像素匹配+均值homograph+结果

1. 像素匹配 2. 均值homography 转换前转换后 3. 比较 基准图转换图

Kibana创建ElasticSearch 用户角色

文章目录 1, ES 权限参考2, 某应用的管理员权限:可以open/close/delete/cat/read/write 索引3, 某应用的读写权限:可以cat/read/write 索引 (不能删除索引或数据)4, 某应用的只读权限 1, ES 权限参考 https://www.elastic.co/gui…

Linux——Docker容器虚拟化平台

安装docker 安装 Docker | Docker 从入门到实践https://vuepress.mirror.docker-practice.com/install/ 不需要设置防火墙 docker命令说明 docker images #查看所有本地主机的镜像 docker search 镜像名 #搜索镜像 docker pull 镜像名 [标签] #下载镜像&…

智能奶柜:重塑牛奶零售新篇章

智能奶柜:重塑牛奶零售新篇章 回忆往昔,孩童时代对送奶员每日拜访的期待,那熟悉的一幕——新鲜牛奶被细心放置于家门口的奶箱中,成为了许多人温馨的童年记忆。如今,尽管直接投递袋装牛奶的情景已不多见,但…

机器学习-6-对随机梯度下降算法SGD的理解

参考一文带您了解随机梯度下降(Stochastic Gradient Descent):python代码示例 参考sklearn-SGDClassifier 1 梯度下降 在机器学习领域,梯度下降扮演着至关重要的角色。梯度下降是一种优化算法,通过迭代沿着由梯度定义的最陡下降方向,以最小化函数。类似于图中的场景,可以…

【自动驾驶技术栈学习】2-软件《大话自动驾驶》| 综述要点总结 by.Akaxi

----------------------------------------------------------------------------------------------------------------- 致谢:感谢十一号线人老师的《大话自动驾驶》书籍,收获颇丰 链接:大话自动驾驶 (豆瓣) (douban.com) -------------…

新版idea配置git步骤及项目导入

目录 git安装 下载 打开git Bash 配置全局用户名及邮箱 查看已经配置的用户名和邮箱 在IDEA中设置Git 问题解决 项目导入 git安装 下载 进入官网 Git - Downloads 点击所属本机系统,window如下图 选择64位安装 按照默认步骤一直下一步即可 打开git Bash …

2024下半年BRC-20铭文发展趋势预测分析

自区块链技术诞生以来,其应用场景不断扩展,代币标准也在不断演进。BRC-20铭文作为基于比特币区块链的代币标准,自其推出以来,因其安全性和去中心化特性,受到了广泛关注和使用。随着区块链技术和市场环境的不断变化&…

二零二四充能必读 | 618火热来袭,编程书单助你提升代码力

文章目录 📘 Java领域的经典之作🐍 Python学习者的宝典🌐 前端开发者的权威指南🔒 并发编程的艺术🤖 JVM的深入理解🏗 构建自己的编程语言🧠 编程智慧的结晶🌟 代码效率的提升 亲爱的…