AIGC 005-Dreambooth定制化生成,微调文本到图像的扩散模型!

AIGC 005-Dreambooth定制化生成,微调文本到图像的扩散模型!


文章目录

    • 0 论文工作
    • 1 论文方法
    • 2 效果

0 论文工作

DreamBooth 论文 (DreamBooth: Fine-Tuning Text-to-Image Diffusion Models for Subject-Driven Generation) 提出了一种新颖的技术,用于微调文本到图像扩散模型,以生成特定主题的新图像,同时保留主题的关键特征,并将其与各种场景、姿势和视角相结合。
大型文本到图像模型在人工智能的进化中取得了显著的飞跃,能够从给定的文本提示中合成高质量和多样化的图像。然而,这些模型缺乏以下能力模拟受试者在给定的参考集中的外观,并在不同的背景下合成它们的新再现。在这篇论文中提出了一种新的方法来“个性化”的文本到图像扩散模型。作为输入一个主题的几张图像,对预先训练过的文本到图像模型进行微调,以便它学习将一个唯一的标识符绑定到该特定的主题上。一旦子对象嵌入到模型的输出域中,可以使用唯一标识符用于合成不同场景下的新的逼真图像。通过利用嵌入在模型中的语义先验和一个新的特定于自类的先验保存损失,该论文的技术能够在没有出现在参考图像中的不同场景、姿势、视图和照明条件中合成主题。
主要用于给大模型插入一个新的概念。定制化,让模型学习一个特定的概念,并用于其他生成。
论文
Project

1 论文方法

DreamBooth 的核心思想是通过微调预训练的文本到图像扩散模型,将新的主题概念注入到模型中,使其能够理解并生成该主题的独特表示。微调整个模型把新概念“A [V] dog”和对应图像插入到模型中。
在这里插入图片描述

a. 训练数据:
少量主题图像: DreamBooth 只需要 3-5 张特定主题的图像,即可有效地学习主题的概念。
唯一标识符: 为主题指定一个唯一的标识符 (例如 “[主题名称]”),以区分于其他概念。
类别先验: 利用主题的类别信息 (例如 “狗”) 来提供额外的语义引导。
b. 微调过程:
文本提示: 使用 “[唯一标识符] [类别]” 形式的文本提示来微调扩散模型,例如 “[主题狗] 一只狗”。
低分辨率训练: 为了提高效率和泛化性,DreamBooth 首先在低分辨率图像上进行微调。
高分辨率微调: 可选地,可以使用高分辨率图像进行进一步微调,以提高生成图像的细节。
正则化: DreamBooth 使用一种正则化技术来防止过度拟合,并保留原始模型的生成能力。
c. 图像生成:
文本提示引导: 使用包含唯一标识符的文本提示来引导生成过程,例如 “[主题狗] 在沙滩上玩耍”。
多样化生成: DreamBooth 能够生成主题在各种场景、姿势和视角下的新图像。
2. 优势:
个性化生成: DreamBooth 能够生成特定主题的全新图像,同时保留主题的关键特征。
高效性: 只需要少量主题图像即可有效地学习主题概念。
多样性和可控性: 可以生成主题在各种场景、姿势和视角下的图像,并通过文本提示进行引导。
保留原始能力: DreamBooth 能够保留原始模型的生成能力,并生成其他主题的图像。
3. 缺点:
过度拟合风险: 使用少量主题图像进行微调可能导致过度拟合,尤其是在训练数据质量较低的情况下。
类别先验依赖: DreamBooth 的效果依赖于主题的类别信息,对于难以分类的主题可能效果不佳。
计算成本: 微调过程仍然需要一定的计算资源和时间。
4. 应用:
DreamBooth 在个性化图像生成方面具有广泛的应用,例如:
创建个人头像: 可以使用 DreamBooth 生成各种风格的个人头像,用于社交媒体或虚拟世界。
产品设计: 可以使用 DreamBooth 生成特定产品的不同版本,例如不同颜色或材质的鞋子。
艺术创作: 艺术家可以使用 DreamBooth 将自己的风格应用于特定主题,创作独特的艺术作品。

2 效果

定制化,让模型学习一个特定的概念,并用于其他生成。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/645948.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI视频教程下载:用提示工程在GPT商店构建10个GPTs

你将学到什么? 深入了解ChatGPT平台和GPT商店的生态系统。 开发为多样化应用定制GPT模型的专业知识。 掌握高效内容生成的AI自动化技术。 学习高级提示工程以优化ChatGPT输出。 获取构建AI驱动的数字营销和广告解决方案的技能。 了解如何为SEO写作和优化创建专…

iOS--锁的学习

iOS--锁的学习 锁的介绍线程安全 锁的分类自旋锁和互斥锁OSSpinLockos_unfair_lockpthread_mutexpthread_mutex的属性 NSLockNSRecursiveLockNSConditionNSConditionLockdispatch_semaphoredispatch_queuesynchronizedatomicpthread_rwlock:读写锁dispatch_barrier_…

S1E45:单链表1 课后作业

测试题:0. 相比起数组来说,单链表具有哪些优势呢? 答:长度非固定,可以申请添加长度 答案:对于数组来说,随机插入或者删除其中间的某一个元素,都是需要大量的移动操作,而…

Vue.Draggable:强大的Vue拖放组件技术探索

一、引言 随着前端技术的不断发展,拖放(Drag-and-Drop)功能已经成为许多Web应用不可或缺的一部分。Vue.js作为现代前端框架的佼佼者,为开发者提供了丰富的生态系统和强大的工具链。Vue.Draggable作为基于Sortable.js的Vue拖放组件…

在二十三届中国科学家论坛大会上,郎百忠被授予《中国首席政治书法领域科学家》荣誉称号

在5月25日于北京举办的第二十三届中国科学家论坛上,备受瞩目的书法家郎百忠凭借其卓越的书法造诣和深厚的政治素养,荣获了"中国首席政治书法科学家"称号。这一荣誉是对郎百忠多年来在书法领域的杰出贡献以及他在政治书法领域的卓越成就的肯定。…

leedcode【19】. 删除链表的倒数第 N 个结点——Java解法

Problem: 19. 删除链表的倒数第 N 个结点 思路解题方法复杂度Code性能 思路 如果要删除倒数第n个节点,让fast移动n步,然后让fast和slow同时移动,直到fast指向链表末尾。删掉slow所指向的节点就可以了。 分为如下几步: 定义fast指…

AI重塑保险业未来:机器学习在风险评估、欺诈检测与客户服务中的深度应用

🧑 博主简介:阿里巴巴嵌入式技术专家,深耕嵌入式人工智能领域,具备多年的嵌入式硬件产品研发管理经验。 📒 博客介绍:分享嵌入式开发领域的相关知识、经验、思考和感悟,欢迎关注。提供嵌入式方向…

Adobe Bridge BR v14.0.3 安装教程 (多媒体文件组织管理工具)

Adobe系列软件安装目录 一、Adobe Photoshop PS 25.6.0 安装教程 (最流行的图像设计软件) 二、Adobe Media Encoder ME v24.3.0 安装教程 (视频和音频编码渲染工具) 三、Adobe Premiere Pro v24.3.0 安装教程 (领先的视频编辑软件) 四、Adobe After Effects AE v24.3.0 安装…

C/C++ vector详解

要想了解STL,就必须会看: cplusplus.comhttps://legacy.cplusplus.com/ 官方内容全都是英文的,可以参考: C/C初始识https://blog.csdn.net/2301_77087344/article/details/138596294?spm1001.2014.3001.5501 vector&#xff…

【LakeHouse】Apache Iceberg + Amoro 助力网易构建云原生湖仓

Apache Iceberg Amoro 助力网易构建云原生湖仓 1.云原生湖仓背景与挑战2.Apache Iceberg 、Amoro 与云原生2.1 Apache Iceberg2.2 Amoro 简介 3.Apache Iceberg Amoro 云原生实践3.1 云上湖仓案例一3.2 云上湖仓案例二3.3 云上湖仓案例三 4.Amoro 未来发展规划 出品社区&…

Dubbo生态之nacos

1.Nacos简介 在博客Dubbo生态之初识dubbo协议-CSDN博客种我们已经介绍了为什么要使用注册中心,nacos作为注册中心的一种,相对于其它的主流注册中心有什么区别呢? NacosEurekaZookeeper数据存储存储在内存存储在内存存储在内存通信协议gRPChttpjute协议…

Yolov9调用COCOAPI生成APs,APm,APl

最近在做小目标检测的东西,因为后期毕业论文需要,所以开始使用Yolov9模型,运行val.py的时候不会自己产生小目标的AP指标,所以研究了一下,步骤非常简单: 第一步: 在数据集中生成json格式的Annota…

ISCC2024个人挑战赛WP-DLLCode

&#xff08;非官方解&#xff0c;以下内容均互联网收集的信息和个人思路&#xff0c;仅供学习参考&#xff09; 注意到程序调用了Encode函数对明文进行加密&#xff0c;点进去发现是对外部DLL的调用 静态分析DLL中的Encode函数可以得到 写出对应的解密脚本如下 #include <…

【三维修复、分割与编辑】InFusion、Bootstrap 3D、GaussianGrouping、GaussianEditor等(论文总结)

提示&#xff1a; 文章目录 前言一、InFusion&#xff1a;扩散模型助力&#xff0c;效率提高20倍&#xff01;(2024)1. 摘要2. 算法3. 效果 二、2D Gaussian Splatting三、Bootstrap 3D:从扩散模型引导三维重建1.摘要2.相关工作3.方法1.Boostrapping by Diffusion 通过扩散模型…

搭建访问阿里云百炼大模型环境

最近这波大降价&#xff0c;还有限时免费&#xff0c;还不赶快试试在线大模型&#xff1f;下面整理访问百炼平台的千问模型方法。 创建RAM子账号并授权 创建RAM子账号 1. “访问控制RAM”入口&#xff08;控制台URL&#xff09; 然后点击进入“RAM管理控制台” 2. 添加用户 …

漫谈企业信息化安全-综述

一、前言 一直以来想写一些文章&#xff0c;谈一谈企业信息化过程中的安全问题及对策。 随着信息技术的不断发展和普及&#xff0c;特别是今年来移动办公、云服务等等新的工作模式和新的信息技术的应用&#xff0c;企业信息化已经成为提升竞争力、促进创新和发展的重要途径。…

Spark-RDD-依赖关系详解

Spark概述 Spark-RDD概述 Spark-RDD-依赖关系 在Apache Spark中&#xff0c;RDD&#xff08;Resilient Distributed Dataset&#xff09;是一种基本的抽象数据结构&#xff0c;代表了分布式的、不可变的数据集。 RDD之间的依赖关系在Spark中非常重要&#xff0c;因为它们决定了…

MySQL 存储过程(实验报告)

一、实验名称&#xff1a; 存储过程 二、实验日期&#xff1a; 2024 年5 月 25 日 三、实验目的&#xff1a; 掌握MySQL存储过程的创建及调用&#xff1b; 四、实验用的仪器和材料&#xff1a; 硬件&#xff1a;PC电脑一台&#xff1b; 配置&#xff1a;内存&#xff0…

mysql事务 事务并发问题 隔离级别 以及原理

mysql事务 简介&#xff1a;事务是一组操作的集合&#xff0c;它是一个不可分割的工作单位&#xff0c;事务会把所有的操作作为一个整体一起向系统提交或撤销操作请求&#xff0c;即这些操作要么同时成功&#xff0c;要么同时失败。 事务四大特性 原子性&#xff08;Atomici…

多模态交互式 AI 代理的兴起:探索 Google 的 Astra 和 OpenAI 的 ChatGPT-4o应用

OpenAI的发展 聊天GPT-4o 和 谷歌的阿斯特拉 标志着交互式人工智能代理的新阶段&#xff1a;多模式交互式人工智能代理的兴起。这次旅程开始于 Siri 和 Alexa的&#xff0c;它将语音激活的人工智能带入主流用途&#xff0c;并通过语音命令改变了我们与技术的交互。尽管有影响&a…