[7] CUDA之常量内存与纹理内存

CUDA之常量内存与纹理内存

1. 常量内存

  • NVIDIA GPU卡从逻辑上对用户提供了 64KB 的常量内存空间,可以用来存储内核执行期间所需要的恒定数据
  • 常量内存对一些特定情况下的小数据量的访问具有相比全局内存的额外优势,使用常量内存也一定程序上减少了对全局内存的带宽占用
  • 常量内存具有 cache 缓冲
  • 下边例举一个简单的程序进行 a * x + b 的数学运算
#include "stdio.h"
#include<iostream>
#include <cuda.h>
#include <cuda_runtime.h>
//Defining two constants
__constant__ int constant_f;
__constant__ int constant_g;
#define N	5
//Kernel function for using constant memory
__global__ void gpu_constant_memory(float *d_in, float *d_out) {
	//Thread index for current kernel
	int tid = threadIdx.x;	
	d_out[tid] = constant_f*d_in[tid] + constant_g;
}
  • 常量内存中的变量使用 __constant__ 关键字修饰
  • 使用 cudaMemcpyToSymbol 函数吧这些常量复制到内核执行所需要的常量内存中
  • 常量内存应合理使用,不然会增加程序执行时间
  • 主函数调用如下:
int main(void) {
	//Defining Arrays for host
	float h_in[N], h_out[N];
	//Defining Pointers for device
	float *d_in, *d_out;
	int h_f = 2;
	int h_g = 20;
	// allocate the memory on the cpu
	cudaMalloc((void**)&d_in, N * sizeof(float));
	cudaMalloc((void**)&d_out, N * sizeof(float));
	//Initializing Array
	for (int i = 0; i < N; i++) {
		h_in[i] = i;
	}
	//Copy Array from host to device
	cudaMemcpy(d_in, h_in, N * sizeof(float), cudaMemcpyHostToDevice);
	//Copy constants to constant memory
	cudaMemcpyToSymbol(constant_f, &h_f, sizeof(int),0,cudaMemcpyHostToDevice);
	cudaMemcpyToSymbol(constant_g, &h_g, sizeof(int));

	//Calling kernel with one block and N threads per block
	gpu_constant_memory << <1, N >> >(d_in, d_out);
	//Coping result back to host from device memory
	cudaMemcpy(h_out, d_out, N * sizeof(float), cudaMemcpyDeviceToHost);
	//Printing result on console
	printf("Use of Constant memory on GPU \n");
	for (int i = 0; i < N; i++) {
		printf("The expression for input %f is %f\n", h_in[i], h_out[i]);
	}
	//Free up memory
	cudaFree(d_in);
	cudaFree(d_out);
	return 0;
}

在这里插入图片描述

2. 纹理内存

  • 纹理内存时另外一种当数据的访问具有特定的模式的时候能够加速程序执行,并减少显存带宽的制度存储器,像常量内存一样,它也在芯片内部被cache 缓冲
  • 该存储器最初是为了图像绘制而设计的,但也可以被用于通过计算
  • 当程序进行具有很大程序上的空间临近性的访存的时候,这种存储器变得非常高效。空间临近性的意思是:每个现成的读取位置都和其他现成的读取位置临近,这对那些需要处理4个临近的相关点和8个临近的点的图像处理应用非常有用。一种线程进行2D的平面空间临近性的访存的例子,可能会像下表:
    在这里插入图片描述
  • 通用的全局内存的cache将不能有效处理这种空间临近性,可能会导致进行大量的显存读取传输。纹理存储器被设计成能够利用这种方寸模型,这样它只会从显存读取1次,然后缓冲掉,因此执行速度会快得多
  • 纹理内存支持2D和3D的纹理读取操作,但编程可能没有那么容易
  • 下边给出一个通过纹理内存进行数组赋值的例子:
#include "stdio.h"
#include<iostream>
#include <cuda.h>
#include <cuda_runtime.h>
#define NUM_THREADS 10
#define N 10

//纹理内存定义
texture <float, 1, cudaReadModeElementType> textureRef;
__global__ void gpu_texture_memory(int n, float *d_out)
{
	int idx = blockIdx.x*blockDim.x + threadIdx.x;
	if (idx < n) {
		float temp = tex1D(textureRef, float(idx));
		d_out[idx] = temp;
	}
}

int main()
{
	//Calculate number of blocks to launch
	int num_blocks = N / NUM_THREADS + ((N % NUM_THREADS) ? 1 : 0);
	//Declare device pointer
	float *d_out;
	// allocate space on the device for the result
	cudaMalloc((void**)&d_out, sizeof(float) * N);
	// allocate space on the host for the results
	float *h_out = (float*)malloc(sizeof(float)*N);
	//Declare and initialize host array
	float h_in[N];
	for (int i = 0; i < N; i++) {
		h_in[i] = float(i);
	}
	//Define CUDA Array
	cudaArray *cu_Array;
	cudaMallocArray(&cu_Array, &textureRef.channelDesc, N, 1);
	//Copy data to CUDA Array,(0,0)表示从左上角开始
	cudaMemcpyToArray(cu_Array, 0, 0, h_in, sizeof(float)*N, cudaMemcpyHostToDevice);
	
	// bind a texture to the CUDA array
	cudaBindTextureToArray(textureRef, cu_Array);
	//Call Kernel	
  	gpu_texture_memory << <num_blocks, NUM_THREADS >> >(N, d_out);
	
	// copy result back to host
	cudaMemcpy(h_out, d_out, sizeof(float)*N, cudaMemcpyDeviceToHost);
	printf("Use of Texture memory on GPU: \n");
	for (int i = 0; i < N; i++) {
		printf("Texture element at %d is : %f\n",i, h_out[i]);
	}
	free(h_out);
	cudaFree(d_out);
	cudaFreeArray(cu_Array);
	cudaUnbindTexture(textureRef);
	
}
  • 纹理引用是通过 texture<> 类型的变量进行定义的,定义是的三个参数意思是:
texture <p1, p2, p3> textureRef;
p1: 纹理元素的类型
p2: 纹理引用的类型,可以是1D,2D,3D的
p3:读取模式,是个可选参数,用来说明是否要执行读取时候的自动类型转换
  • 一定要确保纹理引用被定义成全局静态变量,同时还要确保它不能作为参数传递给任何其他函数
  • cudaBindTextureToArray 函数将纹理引用和CUDA数组进行绑定
  • 运行结果如下:
    在这里插入图片描述
  • ------ end------

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/645167.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

项目日记(1): boost搜索引擎

目录 1. 项目相关背景 2. 搜索引擎的相关宏原理 3. 搜索引擎的技术栈和项目环境 4. 正排索引, 倒排索引, 搜索引擎具体原理 5. 编写数据去标签化和数据清洗的模块parser(解析器). 1.项目相关背景 百度, 搜狗, 360等都有搜索引擎, 但是都是全网的搜索; boost是进行站内搜索…

深入理解 Spring 上下文(Context)层次结构

前言 在使用 Spring 框架进行应用程序开发时&#xff0c;Spring 上下文&#xff08;Context&#xff09;是一个非常重要的概念。Spring 上下文提供了一个环境&#xff0c;用于管理应用程序中的对象&#xff08;通常称为 Bean&#xff09;及其之间的依赖关系。在复杂的应用程序…

大模型效能工具之智能CommitMessage

01 背景 随着大型语言模型的迅猛增长&#xff0c;各种模型在各个领域的应用如雨后春笋般迅速涌现。在研发全流程的效能方面&#xff0c;也出现了一系列贯穿全流程的提效和质量工具&#xff0c;比如针对成本较高的Oncall&#xff0c;首先出现了高质量的RAG助手&#xff1b;在开…

【二叉树】:LeetCode:100.相同的数(分治)

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;初阶初阶结构刷题 &#x1f389;欢迎大家点赞&#x1f44d;评论&#x1f4dd;收藏⭐文章 1.问题描述&#xff1a; 2.问题分析&#xff1a; 二叉树是区分结构的&#xff0c;即左右子树是不一…

数据库DCL语句

数据库DCL语句 介绍&#xff1a; DCL英文全称是Data Control Language(数据控制语言)&#xff0c;用来管理数据库用户、控制数据库的访 问权限。 管理用户&#xff1a; 查询用户: select * from mysql.user;创建用户: create user 用户名主机名 identified by 密码;修改用…

基于开源ATmega8 无感BLDC程序移植到ATmega328PB

基于开源ATmega8 无感BLDC程序移植到ATmega328PB &#x1f516;基于Atmel Studio 7.0开发环境。&#x1f955;开源原项目资源地址&#xff1a;https://svn.mikrokopter.de/websvn/listing.php?repnameBL-Ctrl&path%2F&&#x1f4cd;原理图和PCB资源 BL-Ctrl v2.0 in E…

Keli5烧写STM32程序时出现ST-LINK USB communication error错误(USB 通信错误)

1错误原图 2错误原因 前提驱动安装正确 原因1 usb接触不良&#xff08;极少出现&#xff09; 解决方法 更换USB线 还不行连下载器一起更换 原因2&#xff08;出现概率比较大&#xff09; 下载器的固件出现问题或下载器固件版本与Keli5的版本不匹配 解决方法 在Keli5的…

【python】python tkinter 计算器GUI版本(模仿windows计算器 源码)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

创建带有公共头部的Electron窗口

创建带有公共头部的Electron窗口 创建一个公共头部的html文件 1.我们在项目根目录创建一个名为app-header的文件夹 2.在app-header创建一个文件名为header.html的文件 结构如下&#xff1a; 基本结构和脚本如下 <body> <div class"header"><div c…

基于STM32+NBIOT(BC26)设计的物联网观赏鱼缸

文章目录 一、前言1.1 项目介绍【1】开发背景【2】项目实现的功能【3】项目模块组成 1.2 设计思路 二、(硬件控制端)硬件选型2.1 STM32开发板2.2 PCB板2.3 USB下载线2.4 NBIOT模块2.5 杜邦线&#xff08;2排&#xff09;2.6 稳压模块2.7 电源插头2.8 水温检测传感器2.9 水质检测…

Python 中别再用 ‘+‘ 拼接字符串了!

当我开始学习 Python 时&#xff0c;使用加号来连接字符串非常直观和容易&#xff0c;就像许多其他编程语言&#xff08;比如Java&#xff09;一样。 然而&#xff0c;很快我意识到许多开发者似乎更喜欢使用.join()方法而不是。 在本文中&#xff0c;我将介绍这两种方法之间的…

计算机网络(1

网络初识 目录 网络初识一. 网络分类1. 局域网LAN(Local Area Network):2. 广域网WAN(Wide Area Network): 二. 组建网络的基础设备1. 路由器2. 交换机 三. 标识符 协议 (protocol)一. 协议分层1. 分层的好处2. OSI七层分层3. TCP/IP五层模型(或四层) 模型(1. 物理层(可不算)(2…

从零开始:手把手教你使用Python实现PDF到Excel的转换

来百 在日常工作和学习中&#xff0c;我们经常会遇到需要将PDF文件中的数据提取到Excel表格中的情况。可能是为了进行数据分析、报告生成或者其他目的。虽然手动复制粘贴是一种方法&#xff0c;但对于大量的数据来说&#xff0c;这种方式显然效率太低。幸运的是&#xff0c;Py…

摸鱼大数据——Hive基础理论知识——Hive基础架构

1、Hive和MapReduce的关系 1- 用户在Hive上编写数据分析的SQL语句&#xff0c;然后再通过Hive将SQL语句翻译成MapReduce程序代码&#xff0c;最后提交到Yarn集群上进行运行 2- 大家可以将Hive理解成有道词典&#xff0c;帮助你翻译英文 2、Hive架构 用户接口: 包括 CLI、JDBC/…

ISCC——AI

得到一个T4.pyc 回编译一下 得到下面代码 import base64def encrypt_and_compare(user_input, offset_str, target_base64):if len(user_input) ! 24:return Please enter a string with a length of 24encrypted Nonefor i, char in enumerate(user_input):offset int(off…

自然资源-各级国土空间总体规划的审查要点及流程总结

自然资源-各级国土空间总体规划的审查要点及流程总结 国土空间规划是对一定区域国土空间开发保护在空间和时间上作出的安排&#xff0c;包括总体规划、详细规划和相关专项规划。 国土空间规划管理是国土空间规划中重要的一环。中共中央、国务院发布《关于建立国土空间规划体系…

C++ Primer Plus第十八章复习题

1、使用用大括号括起的初始化列表语法重写下述代码。重写后的代码不应使用数组ar。 class z200 { private:int j;char ch;double z; public:Z200(int jv,char chv&#xff0c;zv) : j(jv), ch (chv), z(zv){} };double x 8.8; std::string s "what a bracing effect ! …

添砖Java(十一)——常见类的使用Object,Math,System,BigDeciaml,包装类

目录 object&#xff1a; toString&#xff1a; equals: ​编辑 Math&#xff1a;​编辑 System: BigDecimal: 基本数据的包装类&#xff1a;​编辑 object&#xff1a; 我们知道&#xff0c;所有的类都是间接或直接继承了object类。然后object里面有几个用得很多的方法…

使用printf的两种方法,解决printf不能使用的问题

使用printf的两种方法&#xff0c;解决printf不能使用的问题 一、微库法 我们使用printf前要加上重定向fputc //重定义fputc函数 int fputc(int ch, FILE *f) { while((USART1->SR&0X40)0);//循环发送,直到发送完毕 USART1->DR (uint8_t) ch; return…