影像导出
- 1.逐日数据导出
- 2.逐月数据导出
- 3.季节数据导出
- 4.逐年数据导出
最近很多小伙伴们私信我,问我如何高效导出遥感数据,从逐日到逐季度,我都有一套自己的方法,今天就来和大家分享一下!
🔍【逐日导出】:首先,逐日数据的导出其实很简单,只需要设置好时间参数,然后用For循环迭代,就可以轻松搞定。
📅【逐月导出】:逐月数据稍微复杂一些,需要对月份进行分类,并且确保数据的连续性。
📊【逐年导出】:逐年数据导出,关键在于数据的累积和汇总,通过设置年度参数,可以快速获取整年的数据。
🌟【逐季度导出】:最后,我还额外整理了逐季度的导出方法,这对于需要季度分析的小伙伴们来说,绝对是个福音!
🌍🌍🌍如果你对这些方法感兴趣,或者在实际操作中遇到了困难,欢迎私信我,我会一一解答,让我们一起高效地处理遥感数据吧!
1.逐日数据导出
var imageCollection = ee.ImageCollection("MODIS/006/MOD13Q1");
var table = ee.FeatureCollection("users/cduthes1991/boundry/China_province_2019");
var roi = table.filter(ee.Filter.eq('provinces','hubei'));
Map.centerObject(roi,6.5)
var styling = {color:"black",fillColor:"00000000"}
Map.addLayer(roi.style(styling),{},"geometry")
var ndviVis = {
min: 0,
max: 8000,
palette: [
'ffffff', 'ce7e45', 'df923d', 'f1b555', 'fcd163', '99b718', '74a901',
'66a000', '529400', '3e8601', '207401', '056201', '004c00', '023b01',
'012e01', '011d01', '011301'
],
};
// ***************************************************************************************************
// 批量导出每幅影像
// ***************************************************************************************************
var imgCol = ee.ImageCollection("MODIS/061/MOD13Q1")
.filterDate('2022-1-1','2022-12-31')
.filterBounds(roi)
.select('NDVI')
.map(function(image){
var imgsub = image;
return image.clip(roi)//.multiply(0.0001)
});
print(imgCol)
// 创建一个函数来展示并导出图像
var showAndExportImage = function(image, index) {
var date = ee.Date(image.get('system:time_start')).format('YYYY-MM-dd').getInfo();
Map.addLayer(image.select('NDVI'), ndviVis, 'NDVI ' + date + ' (' + (index + 1) + ')', 0);
Export.image.toDrive({
image: image.select('NDVI'),
description: 'NDVI_' + date + '_' + (index + 1),
scale: 500,
region: roi,
maxPixels: 1e9
});
};
// 遍历图像集合并处理每幅图像
imgCol.toList(imgCol.size()).evaluate(function(imageList) {
imageList.forEach(function(image, index) {
var img = ee.Image(image.id).clip(roi);
showAndExportImage(img, index);
});
});
结果展示:
2.逐月数据导出
// ************************************************************************************************************
// 批量导出每月影像
// ************************************************************************************************************
var imgCol1 = ee.ImageCollection("MODIS/061/MOD13Q1")
.filterBounds(roi)
.select('NDVI')
.map(function(image) {
return image.clip(roi);
});
var yearstart = 2022;
var yearend = 2023;
var monthstart = 1;
var monthend = 12;
for (var year = yearstart; year <= yearend; year++) {
for (var month = monthstart; month <= monthend; month++) {
var startDate = ee.Date.fromYMD(year, month, 1);
var endDate = startDate.advance(1, 'month').advance(-1, 'day');
var ndvi_month = imgCol1.filterDate(startDate, endDate).select('NDVI');
var ndvi_mean = ndvi_month.median().clip(roi);
var monthName = ee.Date(startDate).format('MMMM').getInfo();
Map.addLayer(ndvi_mean, ndviVis, year + '_' + monthName + '_NDVI_median', 0);
Export.image.toDrive({
image: ndvi_mean,
description: year + '_' + monthName + '_NDVI_median',
folder: 'NDVI_Export',
scale: 250,
region: roi,
maxPixels: 1e9,
});
}
}
结果展示:
3.季节数据导出
//************************************************************************************************************
// 批量导出每季度影像
//************************************************************************************************************
var imgCol2 = ee.ImageCollection("MODIS/061/MOD13Q1")
.filterBounds(roi)
.select('NDVI')
.map(function(image) {
return image.clip(roi);
});
var yearstart = 2020;
var yearend = 2023;
var seasonDates = [
{name: 'Spring', startMonth: 3, endMonth: 5},
{name: 'Summer', startMonth: 6, endMonth: 8},
{name: 'Autumn', startMonth: 9, endMonth: 11},
{name: 'Winter', startMonth: 12, endMonth: 2}
];
seasonDates.forEach(function(season) {
for (var year = yearstart; year <= yearend; year++) {
var startDate, endDate;
if (season.startMonth === 12) { // 处理冬季跨年的情况
startDate = ee.Date.fromYMD(year, season.startMonth, 1);
endDate = ee.Date.fromYMD(year + 1, season.endMonth, 1).advance(1, 'month').advance(-1, 'day');
} else {
startDate = ee.Date.fromYMD(year, season.startMonth, 1);
endDate = ee.Date.fromYMD(year, season.endMonth, 1).advance(1, 'month').advance(-1, 'day');
}
var ndvi_season = imgCol2.filterDate(startDate, endDate).select('NDVI');
print('NDVI collection for ' + year + ' ' + season.name + ':', ndvi_season);
if (ndvi_season.size().getInfo() === 0) {
print('No data for ' + year + ' ' + season.name);
continue;
}
var ndvi_mean = ndvi_season.median().clip(roi);
Map.addLayer(ndvi_mean, ndviVis, year + '_' + season.name + '_NDVI_median', 0);
Export.image.toDrive({
image: ndvi_mean,
description: year + '_' + season.name + '_NDVI_median',
folder: 'NDVI_Export',
scale: 250,
region: roi,
maxPixels: 1e9,
});
}
});
结果展示:
4.逐年数据导出
//************************************************************************************************************
// // 批量导出每年影像
//************************************************************************************************************
var imgCol3 = ee.ImageCollection("MODIS/061/MOD13Q1")
.filterBounds(roi)
.select('NDVI')
.map(function(image){
var imgsub = image;
return image.clip(roi)//.multiply(0.0001)
});
print(imgCol)
var yearstart = 2020;
var yearend = 2023;
for (var i = yearstart; i <= yearend; i++) {
var ndvi_year = imgCol3.filterDate(i + '-01-01', i + '-12-31').select('NDVI');
var ndvi_mean = ndvi_year.median().clip(roi);
Map.addLayer(ndvi_mean, ndviVis, i + '_NDVI_median', 0);
Export.image.toDrive({
image: ndvi_mean,
description: i + '_NDVI_median',
folder: 'NDVI_Export',
scale: 250,
region: roi,
maxPixels: 1e9,
});
}
结果展示: