Pod进阶——资源限制以及探针检查

目录

一、资源限制

1、资源限制定义:

2、资源限制request和limit资源约束

3、Pod和容器的资源请求和限制

4、官方文档示例

5、CPU资源单位

6、内存资源单位

7、资源限制实例

①编写yaml资源配置清单

②释放内存(node节点,以node01为例子)

③注意:

④创建资源

⑤跟踪查看pod状态

⑥查看容器日志

⑦删除pod

⑧修改yaml配置资源清单,提高mysql资源限制

⑨然后再次创建资源

⑩跟踪查看pod状态

11查看pod详细信息

12查看node01节点的详细信息

二、健康检查

1、健康检查的定义

2、探针的三种规则

①livenessProbe存活探针

②readinessProbe就绪探针

③startupProbe启动探针(1.17版本新增)

④注意:

3、Probe支持三种检查方法:

①exec:

②tcpSocket:

③httpGet:

4、探测结果

5、exec方式

示例2、

6、httpGet方式

示例2、

7、tcpSocket方式

三、总结

1、探针

2、检查方式

3、常用的探针可选参数

四、拓展

1、Pod的状态

2、Container生命周期


一、资源限制

1、资源限制定义:

当定义Pod时可以选择性的为每个容器设定所需要的资源数量。最常见的可设定资源是CPU和内存大小,以及其他类型的资源。

2、资源限制request和limit资源约束

①当为 Pod 中的容器指定了 request 资源时,调度器就使用该信息来决定将 Pod 调度到哪个节点上。当还为容器指定了 limit 资源时,kubelet 就会确保运行的容器不会使用超出所设的 limit 资源量。kubelet 还会为容器预留所设的 request 资源量, 供该容器使用。

②如果 Pod 运行所在的节点具有足够的可用资源,容器可以使用超出所设置的 request 资源量。不过,容器不可以使用超出所设置的 limit 资源量。

③如果给容器设置了内存的 limit 值,但未设置内存的 request 值,Kubernetes 会自动为其设置与内存 limit 相匹配的 request 值。 类似的,如果给容器设置了 CPU 的 limit 值但未设置 CPU 的 request 值,则 Kubernetes 自动为其设置 CPU 的 request 值 并使之与 CPU 的 limit 值匹配。

3、Pod和容器的资源请求和限制

官方示例网站:Resource Management for Pods and Containers | Kubernetes

定义创建容器时预分配的CPU资源
spec.containers[].resources.requests.cpu
定义创建容器时预分配的内存资源
spec.containers[].resources.requests.memory
定义创建容器时预分配的巨页资源
spec.containers[].resources.requests.hugepages-<size>
定义cpu的资源上限
spec.containers[].resources.limits.cpu
定义内存的资源上限
spec.containers[].resources.limits.memory
定义巨页的资源上限
spec.containers[].resources.limits.hugepages-<size>

4、官方文档示例

apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: app
    image: images.my-company.example/app:v4
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: log-aggregator
    image: images.my-company.example/log-aggregator:v6
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

Pod有两个Container。每个Container 的请求为 0.25 cpu 和 64MiB(226 字节)内存, 每个容器的资源约束为 0.5 cpu 和 128MiB 内存。 你可以认为该 Pod 的资源请求为 0.5 cpu 和 128 MiB 内存,资源限制为 1 cpu 和 256MiB 内存。

5、CPU资源单位

CPU 资源的 request 和 limit 以 cpu 为单位。Kubernetes 中的一个 cpu 相当于1个 vCPU(1个超线程)。
Kubernetes 也支持带小数 CPU 的请求。spec.containers[].resources.requests.cpu 为 0.5 的容器能够获得一个 cpu 的  、一半 CPU 资源(类似于Cgroup对CPU资源的时间分片)。表达式 0.1 等价于表达式 100m(毫核),表示每 1000 毫秒内容器可以使用的 CPU 时间总量为 0.1*1000 毫秒。
Kubernetes 不允许设置精度小于 1m 的 CPU 资源。 

6、内存资源单位

内存的 request 和 limit 以字节为单位。可以以整数表示,或者以10为底数的指数的单位(E、P、T、G、M、K)来表示, 或者以2为底数的指数的单位(Ei、Pi、Ti、Gi、Mi、Ki)来表示。
如:1KB=10^3=1000,1MB=10^6=1000000=1000KB,1GB=10^9=1000000000=1000MB
1KiB=2^10=1024,1MiB=2^20=1048576=1024KiB

注意:在买硬盘的时候,操作系统报的数量要比产品标出或商家号称的小一些,主要原因是标出的是以 MB、GB为单位的,1GB 就是1,000,000,000Byte,而操作系统是以2进制为处理单位的,因此检查硬盘容量时是以MiB、GiB为单位,1GiB=2^30=1,073,741,824,相比较而言,1GiB要比1GB多出1,073,741,824-1,000,000,000=73,741,824Byte,所以检测实际结果要比标出的少一些。

7、资源限制实例

①编写yaml资源配置清单
[root@master ~]# mkdir /opt/test
[root@master ~]# cd /opt/test
[root@master test]# vim test1.yaml
 
apiVersion: v1
kind: Pod
metadata:
  name: test1
spec:
  containers:
  - name: web
    image: nginx
    env:
    - name: WEB_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: db
    image: mysql
    env:
    - name: MYSQL_ROOT_PASSWORD
      value: "password"
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

②释放内存(node节点,以node01为例子)

由于mysql对于内存的使用要求较高,因此需要先检查内存的可用空间是否能够满足mysql的正常运行,若剩余内存不够,可以对其进行操作释放。

查看内存
free -mh

内存总量为3.7G,实际使用1.1G,因此可有内存应该为2.6G左右。但是由于有1.4G的内存被用于缓存,free为1.2G。所以不需要释放内存。

这里可以手动释放缓存

echo [1\2\3] > /proc/sys/vm/drop_caches

0:0是系统默认值,默认情况下表示不释放内存,由操作系统自动管理
1:释放页缓存
2:释放dentries和inodes
3:释放所有缓存

③注意:

如果因为是应用有像内存泄露、溢出的问题,从swap的使用情况是可以比较快速可以判断的,但free上面反而比较难查看。相反,如果在这个时候,我们告诉用户,修改系统的一个值,“可以”释放内存,free就大了。用户会怎么想?不会觉得操作系统“有问题”吗?所以说,既然核心是可以快速清空buffer或cache,也不难做到(这从上面的操作中可以明显看到),但核心并没有这样做(默认值是0),我们就不应该随便去改变它。

一般情况下,应用在系统上稳定运行了,free值也会保持在一个稳定值的,虽然看上去可能比较小。当发生内存不足、应用获取不到可用内存、OOM错误等问题时,还是更应该去分析应用方面的原因,如用户量太大导致内存不足、发生应用内存溢出等情况,否则,清空buffer,强制腾出free的大小,可能只是把问题给暂时屏蔽了。

④创建资源
kubectl apply -f tets1.yaml

⑤跟踪查看pod状态
kubectl get pod -o wide -w

OOM(OverOfMemory)表示服务的运行超过了我们所设定的约束值。
Ready:2/2,status:Running说明该pod已成功创建并运行,但运行过程中发生OOM问题被kubelet杀死并重新拉起新的pod。

⑥查看容器日志
kubectl logs test1 -c web

nginx启动正常,然后查看mysql日志

kubectl logs test1 -c db

容器问题为mysql

⑦删除pod
kubectl delete -f test1.yaml

⑧修改yaml配置资源清单,提高mysql资源限制
[root@master test]# vim test1.yaml  
 
apiVersion: v1
kind: Pod
metadata:  
  name: test1
spec:  
  containers:  
  - name: web    
    image: nginx    
    env:    
    - name: WEB_ROOT_PASSWORD      
      value: "password"    
    resources:      
    requests:         
      memory: "64Mi"        
      cpu: "250m"      
    limits:        
      memory: "128Mi"        
      cpu: "500m"  
  - name: db    
    image: mysql    
    env:    
    - name: MYSQL_ROOT_PASSWORD      
      value: "password"    
    resources:      
    requests:        
      memory: "512Mi"        
      cpu: "0.5"      
    limits:        
      memory: "1024Mi"        
      cpu: "1"

⑨然后再次创建资源
kubectl apply -f test1.yaml

⑩跟踪查看pod状态
kubectl get pod -o wide -w

11查看pod详细信息
[root@k8s test]# kubectl describe pod test1

12查看node01节点的详细信息
kubectl describe  nodes node01

二、健康检查

1、健康检查的定义

健康检查:又称为探针(Probe),探针是由kubelet对容器执行的定期诊断。

2、探针的三种规则

①livenessProbe存活探针

判断容器是否正在运行。如果探测失败,则kubelet会杀死容器,并且容器将根据 restartPolicy 来设置 Pod 状态。 如果容器不提供存活探针,则默认状态为Success。

②readinessProbe就绪探针

判断容器是否准备好接受请求。如果探测失败,端点控制器将从与 Pod 匹配的所有 service 址endpoints 中剔除删除该Pod的IP地。 初始延迟之前的就绪状态默认为Failure。如果容器不提供就绪探针,则默认状态为Success。

③startupProbe启动探针(1.17版本新增)

判断容器内的应用程序是否已启动,主要针对于不能确定具体启动时间的应用。如果配置了 startupProbe 探测,在则在 startupProbe 状态为 Success 之前,其他所有探针都处于无效状态,直到它成功后其他探针才起作用。 如果 startupProbe 失败,kubelet 将杀死容器,容器将根据 restartPolicy 来重启。如果容器没有配置 startupProbe, 则默认状态为 Success。

④注意:

以上规则可以同时定义。在readinessProbe检测成功之前,Pod的running状态是不会变成ready状态的。

3、Probe支持三种检查方法:

①exec:

在容器内执行指定命令。如果命令退出时返回码为0则认为诊断成功。

②tcpSocket:

对指定端口上的容器的IP地址进行TCP检查(三次握手)。如果端口打开,则诊断被认为是成功的。

③httpGet:

对指定的端口和路径上的容器的IP地址执行HTTPGet请求。如果响应的状态码大于等于200且小于400,则诊断被认为是成功的

4、探测结果

每次探测都将获得一下三种结果之一:

①成功:容器通过了诊断

②失败:容器未通过诊断

③未知:诊断失败,因此不会采取任何行动

5、exec方式

vim exec.yaml
 
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness				#为了健康检查定义的标签
  name: liveness-exec
spec:						#定义了Pod中containers的属性
  containers:
  - name: liveness
    image: busybox
    args:						#传入的命令
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy;sleep 600
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      initialDelaySeconds: 5			#表示pod中容器启动成功后,多少秒后进行健康检查 
      periodSeconds: 5				#在首次健康检查后,下一次健康检查的间隔时间 5s

在配置文件中,可以看到Pod具有单个Container。该perioSeconds字段指定kubelet应该每5秒执行一次活动性探测。该initiaDelaySeconds字段告诉kubelet在执行第一个探测之前应该等待5秒。为了执行探测,kubelet cat /tmp/healthy在容器中执行命令。如果命令成功执行,则返回0,并且kubelet认为Container仍然重要。如果命令返回非0值,则kubelet将杀死Container并重启它。

①在这个配置文件中,可以看到Pod只有一个容器。
②容器中的command字段表示创建一个/tmp/live文件后休眠30秒,休眠结束后删除该文件,并休眠10分钟。
③仅使用livenessProbe存活探针,并使用exec检查方式,对/tmp/live文件进行存活检测。
④initialDelaySeconds字段表示kubelet在执行第一次探测前应该等待5秒。
⑤periodSeconds字段表示kubelet每隔5秒执行一次存活探测。

示例2、
vim exec.yaml
apiVersion: v1
kind: Pod
metadata:
  name: liveness-exec
  namespace: default
spec:
  containers:
  - name: liveness-exec-container
    image: busybox
    imagePullPolicy: IfNotPresent
    command: ["/bin/sh","-c","touch /tmp/live ; sleep 30; rm -rf /tmp/live; sleep 3600"]
    livenessProbe:
      exec:
        command: ["test","-e","/tmp/live"]
      initialDelaySeconds: 1
      periodSeconds: 3
	  
kubectl create -f exec.yaml

kubectl describe pods liveness-exec

6、httpGet方式

vim httpGet.yaml
apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    image: k8s.gcr.io/liveness
    args:
    - /server
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
        - name: Custom-Header
          value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

在配置文件中,可以看到Pod具有单个Container。该periodSeconds字段指定kubectl应该每3秒执行一次活动性探测。该initiaDelaySeconds字段告诉kubelet在执行第一个探测之前应等待3秒。为了执行探测,kubectl将HTTP GET请求发送到Container中运行并在端口8080上侦听的服务器。如果服务器/healthz路径的处理程序返回成功代码,则kubectl会认为任何大于或等于400的代码均表示成功,其他代码都表示失败。

示例2、
apiVersion: v1
kind: Pod
metadata:
  name: liveness-httpget
  namespace: default
spec:
  containers:
  - name: liveness-httpget-container
    image: soscscs/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
    livenessProbe:
      httpGet:
        port: http
        path: /index.html
      initialDelaySeconds: 1
      periodSeconds: 3
      timeoutSeconds: 10
kubectl create -f httpget.yaml

kubectl exec -it liveness-httpget -- rm -rf /usr/share/nginx/html/index.html

kubectl get pods

httpget http://IP:80/index.html  delay 延迟 =3  tomout=10s    period(频率)=3s   succes(成功)=1  faulure(失败)=3 机会      杀死容器

7、tcpSocket方式

定义TCP活动度探针

第三种类型的活动性探针使用TCP套接字,使用此配置,kubelet将尝试在指定端口上打开容器的套接字。如果可以建立连接,则认为该让其运行状况良好,如果不能,则认为该容器是故障容器。

apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: k8s.gcr.io/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

如图所示,TCP检查的配置与HTTP检查非常相似,此示例同时使用就绪和活跃度探针,容器启动5秒后,kubelet将发送第一个就绪探测器。这些尝试连接到goproxy端口8080上的容器。如果探测成功,则容器将标记为就绪,kubelet将继续每10秒运行一次检查。

除了就绪探针之外,此配置还包括活动探针。容器启动后15秒钟,kubelet将运行第一个活动谈着,就像就绪探针一样,这些尝试goproxy在端口8080上连接到容器。如果活动探针失败,则容器将重新启动。

三、总结

1、探针

①livenessProbe(存活探针)∶判断容器是否正常运行,如果失败则杀掉容器(不是pod),再根据重启策略是否重启容器

②readinessProbe(就绪探针)∶判断容器是否能够进入ready状态,探针失败则进入noready状态,并从service的endpoints中剔除此容器

③startupProbe∶判断容器内的应用是否启动成功,在success状态前,其它探针都处于无效状态

2、检查方式

①exec∶使用 command 字段设置命令,在容器中执行此命令,如果命令返回状态码为0,则认为探测成功

②httpget∶通过访问指定端口和url路径执行http get访问。如果返回的http状态码为大于等于200且小于400则认为成功

③tcpsocket∶通过tcp连接pod(IP)和指定端口,如果端口无误且tcp连接成功,则认为探测成功

3、常用的探针可选参数

①initialDelaySeconds∶ 容器启动多少秒后开始执行探测

②periodSeconds∶探测的周期频率,每多少秒执行一次探测

③failureThreshold∶探测失败后,允许再试几次

④timeoutSeconds ∶ 探测等待超时的时间

四、拓展

1、Pod的状态

①pending:

pod已经被系统认可了,但是内部的container还没有创建出来。这里包含调度到node上的时间以及下载镜像的时间,会持续一小段时间。

②Running:

pod已经与node绑定了(调度成功),而且pod中所有的container已经创建出来,至少有一个容器在运行中,或者容器的进程正在启动或者重启状态。--这里需要注意pod虽然已经Running了,但是内部的container不一定完全可用。因此需要进一步检测container的状态。

③Succeeded:

这个状态很少出现,表明pod中的所有container已经成功的terminated了,而且不会再被拉起了。

④Failed:

pod中的所有容器都被terminated,至少一个container是非正常终止的。(退出的时候返回了一个非0的值或者是被系统直接终止)

⑤unknown:

由于某些原因pod的状态获取不到,有可能是由于通信问题。 一般情况下pod最常见的就是前两种状态。而且当Running的时候,需要进一步关注container的状态

2、Container生命周期

①Waiting:启动到运行中间的一个等待状态。

②Running:运行状态。

③Terminated:终止状态。 如果没有任何异常的情况下,container应该会从Waiting状态变为Running状态,这时容器可用。

但如果长时间处于Waiting状态,container会有一个字段reason表明它所处的状态和原因,如果这个原因很容易能标识这个容器再也无法启动起来时,例如ContainerCannotRun,整个服务启动就会迅速返回。(这里是一个失败状态返回的特性,不详细阐述)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/640580.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

APP广告变现怎么实现的,背后逻辑是什么?

广告变现的实现主要基于以下几个关键步骤和逻辑&#xff1a; 用户获取与留存&#xff1a;首先&#xff0c;APP需要吸引足够的用户并确保他们的留存率。只有拥有庞大且活跃的用户基础&#xff0c;APP才能吸引广告商投放广告。因此&#xff0c;开发者需要通过优化APP质量、提升用…

阅读笔记——《未知协议状态机推断技术研究综述》

【参考文献】盛嘉杰, 牛胜杰, 陈阳, 等. 未知协议状态机推断技术研究综述[J]. 计算机与现代化, 2023 (05): 58.【注】本文仅为作者个人学习笔记&#xff0c;如有冒犯&#xff0c;请联系作者删除。 摘要 协议逆向工程&#xff08;PRE&#xff09;描述了协议的行为逻辑&#xff…

【Python】—— lambda表达式

目录 &#xff08;一&#xff09;应用场景 &#xff08;二&#xff09;lambda 语法 &#xff08;三&#xff09;示例分析 &#xff08;四&#xff09;lambda参数形式 4.1 无参数 4.2 一个参数 4.3 默认参数 4.4 可变参数 &#xff1a;*args 4.5 可变参数 &#xff1a;…

需求响应+配网重构!含高比例新能源和用户需求响应的配电网重构程序代码!

前言 配电网重构作为配电网优化运行的手段之一&#xff0c;通过改变配电网的拓扑结构&#xff0c;以达到降低网损、改善电压分布、提升系统的可靠性与经济性等目的。近年来&#xff0c;随着全球能源消耗快速增长以及环境的日趋恶化&#xff0c;清洁能源飞速发展&#xff0c;分…

orin部署tensorrt、cuda、cudnn、pytorch

绝大部分参考https://blog.csdn.net/qq_41336087/article/details/129661850 非orin可以参考https://blog.csdn.net/JineD/article/details/131201121 报错显卡驱动安装535没法安装、原始是和l4t-cuda的部分文件冲突 Options marked [*] produce a lot of output - pipe it th…

基于SSM的“酒店管理系统”的设计与实现(源码+数据库+文档)

基于SSM的“酒店管理系统”的设计与实现&#xff08;源码数据库文档) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SSM 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 首页 管理员登录页面 用户管理页面 客房信息查询 酒店详细信息 后台…

rmxprt转换的3D模型只有一半?---模大狮模型网

在3D建模和渲染的工作流程中&#xff0c;我们经常需要用到各种转换工具来兼容不同平台或软件之间的模型格式。rmxprt(或其他类似的模型转换工具)就是其中的一种&#xff0c;它能够将模型从一种格式转换为另一种格式。然而&#xff0c;有时在转换过程中可能会遇到一些问题&#…

工作中的冲突,职场人士应如何化解

在职场中&#xff0c;冲突和分歧是不可避免的现象。它们可能来源于工作分配不均、目标不一致、价值观差异或个性不合等。面对这些冲突和分歧&#xff0c;我们需要具备有效的冲突管理技巧来化解问题&#xff0c;以维持团队的和谐与工作效率。 分析冲突的原因至关重要。通常来说&…

StringMVC

目录 一&#xff0c;MVC定义 二&#xff0c;SpringMVC的基本使用 2.1建立连接 - RequestMapping("/...") ​编辑 2.2请求 1.传递单个参数 2.传递多个参数 3.传递对象 4.参数重命名 5.传递数组 6. 传递集合 7.传递JSON数据 8. 获取url中数据 9. 传递文…

uniapp+canvas实现逐字手写效果

在移动端使用 UniApp 进行逐字手写的功能。用户可以在一个 inputCanvas 上书写单个字&#xff0c;然后在特定时间后将这个字添加到 outputCanvas 上&#xff0c;形成一个逐字的手写效果。用户还可以保存整幅图像或者撤销上一个添加的字。 初始化 Canvas&#xff1a; 使用 uni.c…

每日一题《leetcode--1472.设计浏览器历史记录》

https://leetcode.cn/problems/design-browser-history/ 这里我是用双栈实现前进和后退。 #define URL_SIZE 21 #define STACK_SIZE 5000typedef struct {char *BackStack[STACK_SIZE]; //回退栈char *ForwardStack[STACK_SIZE]; //前进栈int BackTop; //回退栈的栈顶下标…

3D瓦片地图组件上线|提供DEM数据接入,全方位呈现三维地图地形!

在用户调研中&#xff0c;我们了解到很多用户自身的可视化项目&#xff0c;需要在垂直空间上表现一些业务&#xff0c;例如&#xff1a;3D地形效果&#xff0c;数据底板建设等&#xff0c;而传统的地图效果不满足此用户需求。瓦片地图能够无限加载大地图&#xff0c;以更三维的…

云端升级,智能适配——LDR6282,USB-C接口显示器的最佳选择

华为MateView USB-C接口显示器技术深度解析与科普 随着科技的飞速发展&#xff0c;终端显示产品也迎来了全新的变革。在众多更新迭代中&#xff0c;华为MateView显示器凭借其独特的USB-C接口设计&#xff0c;为用户带来了前所未有的便捷体验。本文将带您深入探索这款显示器的技…

uniapp开发vue3监听右滑返回操作,返回到指定页面

想要在uniapp框架中监听左滑或者右滑手势&#xff0c;需要使用touchstart和touchend两个api&#xff0c;因为没有原生的左右滑监听api&#xff0c;所以我们只能依靠这两个api来获取滑动开始时候的x坐标和滑动结束后的x坐标做比对&#xff0c;右滑的话&#xff0c;结束时候的x坐…

Flutter 页面布局 Flex Expanded弹性布局

题记 —— 执剑天涯&#xff0c;从你的点滴积累开始&#xff0c;所及之处&#xff0c;必精益求精&#xff0c;即是折腾每一天。 什么是弹性布局&#xff08;Flex&#xff09;&#xff1f; 弹性布局&#xff08;Flex&#xff09;是一种基于弹性盒子模型的布局方式&#xff0c;类…

【如何让论文中摘要后面的内容不出现在目录中】

首先选择摘要二字&#xff0c;设置为一级标题&#xff0c;然后选择摘要后面的内容设置为正文样式&#xff0c;再选择这一部分看一下是不是都是正文大纲级别&#xff0c;如果是那就可以了。 具体流程如下 1、选择摘要二字&#xff0c;设置为一级标题样式 2、选择摘要后面的文…

Springboot零星知识点1

1、请求路径的组成 2、多个环境配置文件 3、对 自定义的属性 增加文字描述&#xff0c;而且IDEA不会警告 4、读取属性值的两种方式 5、东东

TP6 模型批量插入获取插入的自增ID

在TP框架中&#xff0c;数据插入 添加一条数据,返回添加成功的条数 $data [foo > bar, bar > foo]; Db::name(user)->save($data); // 或者 Db::name(user)->insert($data); 批量添加 $data [[foo > bar, bar > foo],[foo > bar1, bar > foo1],[…

【管理咨询宝藏112】波士顿现场精益生产及运营管理整体优化方案

本报告首发于公号“管理咨询宝藏”&#xff0c;如需阅读完整版报告内容&#xff0c;请查阅公号“管理咨询宝藏”。 【管理咨询宝藏112】波士顿现场精益生产及运营管理整体优化方案 【格式】PDF版本 【关键词】波士顿咨询、精益生产、运营提升 【核心观点】 - 家电市场的发展要…

推荐几款新手学习编程的网站

免费在线开发平台 介绍一款编程平台&#xff0c;专为学生和开发者量身打造&#xff01;平台拥有近4000道编程题目&#xff0c;支持多种编程语言&#xff08;包括C、C、JavaScript、TypeScript、Go、Rust、PHP、Java、Ruby、Python3和C#&#xff09;&#xff0c;为您提供全面的学…