Convolutional Occupancy Networks【ECCV2020】

论文:https://arxiv.org/pdf/2003.04618

代码:GitHub - autonomousvision/convolutional_occupancy_networks: [ECCV'20] Convolutional Occupancy Networks

 

图 1:卷积占据网络。传统的隐式模型 (a) 由于其全连接网络结构,表现能力受到限制。我们提出了卷积占据网络 (b),利用卷积,从而实现可扩展且等变的隐式表示。我们通过线性插值在 3D 位置 查询卷积特征。与占据网络(ONet) 相比,所提出的特征表示 依赖于输入 和 3D 位置 。图 (c) 显示了在 Matterport3D 数据集上从一个噪声点云重建的两层建筑。 

摘要:

        最近,隐式神经表示在基于学习的3D重建中变得流行起来。尽管展示了有前景的结果,但大多数隐式方法仅限于相对简单的单个对象几何形状,并且无法扩展到更复杂或大规模的场景。隐式方法的关键限制因素是其简单的全连接网络架构,这不允许在观察中整合局部信息或结合诸如平移等变性等归纳偏置。在本文中,我们提出了卷积占据网络,这是一种更灵活的隐式表示,用于详细重建物体和3D场景。

        通过结合卷积编码器和隐式占据解码器,我们的模型结合了归纳偏置,从而在3D空间中实现结构化推理。我们通过从噪声点云和低分辨率体素表示中重建复杂几何形状来研究所提出表示的有效性。我们通过实验证明,我们的方法可以实现单个对象的细粒度隐式3D重建,扩展到大型室内场景,并且可以从合成数据很好地泛化到真实数据。 

主要贡献:

  • 我们识别了当前隐式3D重建方法的主要限制。
  • 我们提出了一种灵活的平移等变架构,使得从物体到场景层次的精确3D重建成为可能。
  • 我们证明了我们的模型能够从合成场景泛化到真实场景,并能够泛化到新的物体类别和场景。

相关工作:

基于学习的3D重建方法可以根据它们使用的输出表示进行广泛分类。

体素: 体素表示是基于学习的3D重建最早期的表示之一【5, 46, 47】。由于体素表示的立方体内存需求,一些工作提出在多个尺度上操作或使用八叉树进行有效的空间分割【8, 14, 25, 37, 38, 42】。然而,即使使用自适应数据结构,体素技术在内存和计算方面仍然有限。

点云: 另一种3D重建的输出表示是3D点云,已在【9, 21, 34, 49】中使用。然而,基于点云的表示在处理点的数量方面通常受到限制。此外,它们无法表示拓扑关系。

网格: 一种流行的替代方法是使用神经网络直接回归网格的顶点和面【12, 13, 17, 20, 22, 44, 45】。虽然这些工作中的一些需要变形固定拓扑的模板网格,其他则导致带有自相交网格面的非水密重建。

隐式表示: 最近的隐式占据【3, 26】和距离场【27, 31】模型使用神经网络在给定任何3D点作为输入时推断占据概率或距离值。与上述需要离散化的显式表示(例如体素、点或顶点数量)相比,隐式模型连续表示形状,并且自然处理复杂的形状拓扑。隐式模型已被用于从图像学习隐式表示【23, 24, 29, 41】,编码纹理信息【30】,进行4D重建【28】,以及基于原语的重建【10, 11, 15, 32】。不幸的是,所有这些方法都仅限于相对简单的单个对象的3D几何形状,不能扩展到更复杂或大规模的场景。关键限制因素是简单的全连接网络架构,这不允许整合局部特征或结合平移等变性等归纳偏置。

值得注意的例外是PIFu【40】和DISN【48】,它们使用像素对齐的隐式表示来重建穿衣人【40】或ShapeNet对象【48】。虽然这些方法也利用了卷积,但所有操作都在2D图像域中进行,限制了这些模型到基于图像的输入和单个对象的重建。相比之下,在这项工作中,我们提出在物理3D空间中聚合特征,利用2D和3D卷积。因此,我们的以世界为中心的表示独立于相机视点和输入表示。此外,我们证明了隐式3D重建在场景级别的可行性,如图1c所示。

在并行工作中,Chibane等人【4】提出了一个与我们的卷积体积解码器相似的模型。与我们相比,他们仅考虑单一变体的卷积特征嵌入(3D),使用有损离散化进行3D点云编码,并且仅展示了单个对象和人类的结果,而不是完整的场景。在另一项并行工作中,Jiang等人【16】利用形状先验进行场景级隐式3D重建。与我们不同的是,他们使用3D点法线作为输入,并且在推理时需要优化。

方法:

        我们的目标是使隐式3D表示更加具有表现力。我们模型的概览如图2所示。我们首先将输入x(例如,一个点云)编码成2D或3D特征网格(左侧)。这些特征经过卷积网络处理,然后通过全连接网络解码为占据概率。我们在实验中研究平面表示(a+c+d)、体积表示(b+e)以及它们的组合。接下来,我们详细解释编码器(第3.1节)、解码器(第3.2节)、占据预测(第3.3节)和训练过程(第3.4节)。

3.1 编码器

虽然我们的方法与输入表示无关,但我们专注于3D输入,以展示我们的模型恢复精细细节和扩展到大场景的能力。更具体地说,我们假设输入x是噪声稀疏的点云(例如,来自结构运动或激光扫描),或者是粗糙的占据网格。

我们首先用一个与任务相关的神经网络处理输入x,以获得每个点或体素的特征编码。对于体素化的输入,我们使用一个单层3D CNN,对于3D点云,我们使用一个浅层的PointNet [35] 并进行局部池化。在获得这些特征之后,我们按照以下方式构建平面和体积特征表示,以包含局部邻域信息。

平面编码器:如图2a所示,对于每个输入点,我们执行正交投影到一个规范平面上(即,与坐标系的轴对齐的平面),我们将其离散化为分辨率为H × W像素单元。对于体素输入,我们将体素中心视为一个点并将其投影到平面上。我们使用平均池化来聚合投影到相同像素的特征,从而得到具有维度H × W × d的平面特征,其中d是特征维度。

在我们的实验中,我们分析了我们模型的两个变体:一个变体将特征投影到地面平面,另一个变体将特征投影到所有三个规范平面。虽然前者在计算上更有效率,但后者允许在z维度中恢复更丰富的几何结构。

体积编码器:虽然平面特征表示允许在较大的空间分辨率下进行编码(1282像素及以上),但它们局限于二维。因此,我们还考虑体积编码(见图2b),它更好地表示3D信息,但局限于较小的分辨率(通常在我们的实验中为323个体素)。与平面编码器类似,我们执行平均池化,但这次是针对落入同一个体素单元的所有特征,从而得到具有维度H × W × D × d的特征体积。

3.2 解码器

我们通过使用2D和3D卷积的Hourglass(U-Net)网络[6, 39]处理来自编码器的特征平面和特征体积,为我们的模型赋予了平移等变性,该网络由一系列下采样和上采样卷积组成,并带有跳跃连接,以整合局部和全局信息。我们选择U-Net的深度,使其感受野等于相应特征平面或体积的大小。

我们的单平面解码器(图2c)使用2D U-Net处理地面平面特征。多平面解码器(图2d)分别使用具有共享权重的2D U-Net处理每个特征平面。我们的体积解码器(图2e)使用3D U-Net。由于卷积操作具有平移等变性,我们的输出特征也具有平移等变性,从而实现了结构化推理。此外,卷积操作能够“修复”特征同时保留全局信息,从而实现了从稀疏输入进行重构。

3.3 占据预测

给定聚合的特征图,我们的目标是估计3D空间中任意点p的占据概率。对于单平面解码器,我们将每个点p正交投影到地面平面,并通过双线性插值查询特征值(图2c)。对于多平面解码器(图2d),我们通过对所有3个平面的特征求和来聚合来自3个规范平面的信息。对于体积解码器,我们使用三线性插值(图2e)。将输入x在点p处的特征向量表示为ψ(p, x),我们使用一个小型全连接的占据网络来预测点p的占据情况:

网络包括多个ResNet块。我们使用[29]的网络架构,将ψ添加到每个ResNet块的输入特征中,而不是之前工作中提出的更消耗内存的批量归一化操作[26]。与[29]不同,我们使用32作为隐藏层的特征维度。有关网络架构的详细信息可在补充材料中找到。

3.4 训练和推断

在训练时,我们在感兴趣的体积内均匀采样查询点p ∈ R 3,并预测它们的占据值。我们应用预测值ˆop和真实占据值op之间的二元交叉熵损失: 

结论:

我们引入了卷积占据网络(Convolutional Occupancy Networks),这是一种将卷积神经网络的表现力与隐式表示的优势结合起来的新型形状表示方法。我们分析了2D和3D特征表示之间的权衡,并发现融合卷积操作有助于推广到未见类别、新颖的房间布局和大规模室内空间。我们发现我们的三平面模型在内存效率方面表现良好,对合成场景效果好,并允许更大的特征分辨率。相比之下,我们的体积模型在真实场景中表现出色,但消耗更多内存。

最后,我们指出我们的方法不具备旋转等变性,而且只在与定义的体素大小的倍数相关的平移中具有平移等变性。此外,合成数据和真实数据之间仍然存在性能差距。虽然本文的重点是基于学习的3D重建,在未来的工作中,我们计划将我们的新型表示方法应用于其他领域,如隐式外观建模和4D重建。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/640512.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

政策及需求多因素驱动下 中国适老化改造市场空间大

政策及需求多因素驱动下 中国适老化改造市场空间大 适老化改造是为了提高老年人居住环境的舒适度和安全性,满足老年人居住需求进行的建筑改造,根据住房和城乡建设部城市建设司发布的《城市居家适老化改造指导手册》可以将适老化改造分为基础性改造和提升…

Spring Cloud 系列之Gateway:(9)初识网关

传送门 Spring Cloud Alibaba系列之nacos:(1)安装 Spring Cloud Alibaba系列之nacos:(2)单机模式支持mysql Spring Cloud Alibaba系列之nacos:(3)服务注册发现 Spring Cloud 系列之OpenFeign:(4)集成OpenFeign Spring Cloud …

【小笔记】如何在docker中更新或导入neo4j数据?

如何在docker中更新或导入neo4j数据? (1)背景: 我尝试了4.4.9和5.19.0版本的Neo4j社区版,基于他们的镜像创建容器后,需要导入我准备好的csv文件或dump文件,因为数据量非常大,所以采…

装备制造项目管理软件:奥博思PowerProject项目管理系统

数字化正逐步改变着制造方式和企业组织模式。某制造企业领导层透露,在采用数字化项目管理模式后,企业的发展韧性更加强劲,构筑起了竞争新优势,企业产品研制周期缩短25%,生产效率提升18%。 随着全球经济的发展&#xf…

北理工提出 LTrack 双摄像头系统 | 专注于暗场景多目标跟踪,自动驾驶和夜间监控的福音!

低光照场景在现实世界应用中很普遍(例如自动驾驶和夜间监控)。最近,在各种实际用例中的多目标跟踪受到了很多关注,但在暗场景中的多目标跟踪却鲜少被考虑。 在本文中,作者专注于暗场景中的多目标跟踪。为了解决数据集…

【电子学会】2023年09月图形化一级 -- 芝麻开门

芝麻开门 1. 准备工作 (1)删除小猫角色,添加角色Key; (2)删除白色背景,添加背景Castle 1和Pathway。 2. 功能实现 (1)点击绿旗,钥匙在舞台中间&#xff…

Git 的安装和使用

一、Git 的下载和安装 目录 一、Git 的下载和安装 1. git 的下载 2. 安装 二、Git 的基本使用-操作本地仓库 1 初始化仓库 1)创建一个空目录 2)git init 2 把文件添加到版本库 1)创建文件 2)git add . 3)g…

51单片机简单控制180度舵机

代码: 链接:https://pan.baidu.com/s/1K9dg2NwRhy49db_O_hqv-g?pwd1234 提取码:1234 一、路线 我在了解这个舵机之前最像想看到的是一个完全的路径。 比如我想学习b站上那个智能门锁,那就得每个模块的基本代码都会才能结合各…

​​​【收录 Hello 算法】第 10 章 搜索

目录 第 10 章 搜索 本章内容 第 10 章 搜索 搜索是一场未知的冒险,我们或许需要走遍神秘空间的每个角落,又或许可以快速锁定目标。 在这场寻觅之旅中,每一次探索都可能得到一个未曾料想的答案。 本章内容 10.1 二分查找10.2 二…

智慧展厅设计的难点有哪些

1、运用先进的展示技术 将全息影像、三维投影、虚拟现实、人机互动等技术做做完美衔接,把展厅的内容展示做到丰富多彩,从而让展厅富有科技感和艺术性。 2、内容要生动有趣 从而更好地吸引参观者。展厅设计师要与客户有良好深入的沟通,搜集与整…

struct.unpack_from()学习笔记

struct.unpack_from(fmt,b_data,offset) 按照指定的格式fmt,从偏移位置offset,对b_data开始解包,返回数据格式是一个元组(v1,v2…) fmt可以有: _struct.py: The remaining chars indicate types of args and must match exactly;…

WPF之容器标签之Canvas布局标签

Canvas: 定义一个区域&#xff0c;可在其中使用相对于 Canvas 区域的坐标以显式方式来定位子元素。 实例 可以在子标签使用Canvas属性设置定位 <Canvas Width"500" Height"300"><StackPanel Width"100" Height"100"Backgro…

详解最新版RabbitMQ 基于RPM 方式的安装

如何选择安装版本 已经不支持的发布系列 版本最后补丁版本首次发布时间停止更新时间3.73.7.282017年11月28日2020年09月30日3.63.6.162015年12月22日2018年05月31日3.53.5.82015年03月11日2016年10月31日3.43.4.42014年10月21日2015年10月31日3.33.3.52014年04月02日2015年03…

列表元素添加的艺术:从单一到批量

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言 二、向列表中添加单一元素 1. append方法 2. insert方法 三、向列表中添加批量…

2024年学浪视频怎么下载到手机相册

随着2024年的到来&#xff0c;学浪平台继续为广大学习者提供优质的在线教育资源。然而&#xff0c;如何将这些宝贵的视频内容下载到手机相册&#xff0c;方便随时离线观看呢&#xff1f;无论您是想在旅途中学习&#xff0c;还是希望在没有网络的情况下复习课程&#xff0c;本文…

网络层协议——IP协议

目录 一、IP协议 二、IP协议格式 三、网段划分 四、私网IP地址和公网IP地址 五、路由 一、IP协议 IP指网际互连协议&#xff0c;Internet Protocol的缩写&#xff0c;是TCP/IP体系中的网络层协议。 IP协议主要作用是提供一种能力&#xff0c;将数据从A主机传送到B主机的能力…

转行3年涨薪300%,我总结了一套产品经理快速入门指南!

想转行的产品小白&#xff0c;初期一定会遇到这个问题——我要如何 0 基础转行产品经理&#xff1f; 要想 0 基础快速转行产品经理&#xff0c;我通过个人实践总结了 5 个关键点&#xff0c;可以参考。 一、熟悉产品经理的工作全流程 转行的产品小白&#xff0c;首先要建立产…

【飞桨AI实战】基于PP-OCR和ErnieBot的智能视频问答

前言 本次分享将带领大家从 0 到 1 完成一个基于 OCR 和 LLM 的视频字幕提取和智能视频问答项目&#xff0c;通过 OCR 实现视频字幕提取&#xff0c;采用 ErnieBot 完成对视频字幕内容的理解&#xff0c;并回答相关问题&#xff0c;最后采用 Gradio 搭建应用。本项目旨在帮助初…

AI预测福彩3D采取888=3策略+杀断组+杀和尾缩水测试5月24日预测第1弹

哈喽&#xff0c;各位亲爱的小伙伴&#xff0c;在发布本期预测结果之前&#xff0c;先对最近的这套算法测试做一下总结。 最近的一套算法采用了88723的容差策略&#xff0c;关于容差策略相信大家都比较清楚&#xff1a;容差可以最大限度的保证初始大底中包含中奖号码&#xff0…

探秘机器学习经典:K-近邻算法(KNN)全解析

在浩瀚的机器学习宇宙中,K-近邻算法(K-Nearest Neighbors,简称KNN)如同一颗璀璨的明星,以其简洁直观的原理和广泛的应用范围,赢得了众多数据科学家的喜爱。今天,让我们一起揭开KNN的神秘面纱,深入探讨它的运作机制、优缺点、应用场景,以及如何在实际项目中灵活运用。 …