基于GA遗传优化的CNN-GRU的时间序列回归预测matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 CNN-GRU模型架构

4.2 GA优化CNN-GRU流程

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

...................................................................
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');



[V,I] = min(JJ);
X     = phen1(I,:);

LR             = X(1);
numHiddenUnits1 = floor(X(2))+1;% 定义隐藏层中LSTM单元的数量
numHiddenUnits2 = floor(X(3))+1;% 定义隐藏层中LSTM单元的数量
%CNN-GRU
layers = func_model2(Dim,numHiddenUnits1,numHiddenUnits2);
%训练
[Net,INFO] = trainNetwork(Nsp_train2, NTsp_train, layers, options);
IT  =[1:length(INFO.TrainingLoss)];
Accuracy=INFO.TrainingRMSE;
figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');
%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1*Vmax2;
T_sim2=Dpre2*Vmax2;


%网络结构
analyzeNetwork(Net)


figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);



figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
    'LineWidth',2,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on

subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
    'LineWidth',1,...
    'MarkerSize',6,...
    'MarkerEdgeColor','k',...
    'MarkerFaceColor',[0.9,0.0,0.0]);
 
xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);


save R2.mat Num2 Tat_test T_sim2 IT Accuracy Error2
141

4.算法理论概述

       基于遗传算法(Genetic Algorithm, GA)优化的CNN-GRU(卷积神经网络-门控循环单元)时间序列回归预测模型,是融合了遗传算法的优化能力和深度学习模型的表达力的一种高级预测框架。该模型通过结合CNN在特征提取上的优势和GRU在处理序列数据中的高效记忆机制,实现了对时间序列数据的深入理解和未来值的精确预测。同时,利用遗传算法对模型超参数进行优化,能够进一步提升模型的预测性能。

       遗传算法是一种借鉴自然选择和遗传机制的启发式搜索算法,通过模拟生物进化过程中的“选择”、“交叉”(杂交)、“变异”等操作,来寻找问题的最优解。在CNN-GRU模型的超参数优化中,GA的目标是探索出能使模型预测性能(如均方误差最小化或准确率最大化)最佳的超参数组合,这些超参数可能包括学习率、网络层数、神经元数量、批次大小等。

4.1 CNN-GRU模型架构

GRU作为LSTM的简化版,同样用于捕获序列中的长期依赖,但具有更少的门控机制.

4.2 GA优化CNN-GRU流程

  1. 初始化:随机生成初始种群,每个个体代表一组超参数配置。
  2. 评估:应用每组超参数配置训练CNN-GRU模型,并在验证集上评估其性能。
  3. 选择:根据评估性能选择适应度较高的个体进入下一代,常用的有轮盘赌选择、锦标赛选择等。
  4. 交叉:对选定的个体执行交叉操作,交换它们的部分基因(即超参数),以产生新个体。
  5. 变异:按照一定概率对个体的某些基因进行小幅度修改,增加种群多样性。
  6. 迭代:重复上述过程直到达到预定的迭代次数或满足停止准则。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/640016.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

类和对象的基本概念

类和对象的基本概念 C和C中struct区别类的封装封装访问权限总结struct和class的区别 将成员变量设置为private C和C中struct区别 C语言struct只有变量C语言struct 既有变量,也有函数 类的封装 封装 把变量(属性)和函数(操作&a…

【软件工程】【23.10】p3

关键字: 软件工程定义及目的、需求规约定义及性质、模块的控制域及作用域、类和类图、调试特征、瀑布模型

Star CCM+分配零部件至区域后交界面丢失-更新找回

前言 在工程应用中,将零部件分配至区域后,一般常规的操作需要对交界面进行检查。偶尔会发现交界面丢失。遇到此类问题,在没有做其他操作前(比如画网格),可以选择先删除所有区域在重新分配至区域。若已经进…

手把手教学,一站式安装ubuntu及配置服务器

应用背景:实验室刚弄了一台4090的电脑,老师让我们搞成服务器 一、制作ubuntu启动盘 1.1 清华开源影像站下载ubuntu桌面版本Index of /ubuntu-releases/22.04/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirror 1.2 下载UltralSO软件 https://…

【C语言回顾】文件操作

前言1. 文件打开模式2. 示例代码2.1 打开和关闭文件2.2 读写文件2.3 二进制文件操作 结语 #include<GUIQU.h> int main { 上期回顾: 【C语言回顾】动态内存管理 个人主页&#xff1a;C_GUIQU 专栏&#xff1a;【C语言学习】 return 一键三连; } 前言 各位小伙伴大家好&…

融资融券大揭秘:两融入门操作最新指南!

#引言# 随着中国资本市场日新月异的发展进程&#xff0c;融资融券交易已崭露头角&#xff0c;成为投资者们瞩目的焦点。作为一种颇具影响力的投资方式&#xff0c;它正逐渐吸引越来越多的投资者关注。本文旨在为大家深入剖析融资融券交易的核心概念、详尽的操作步骤以及必须留意…

基础widgets

1.widgets_文本和字体 在flutter当中几乎所有的对象都是widget,他跟原生开发的控线不一样,flutter开发当中,widget的概念更广泛一点, 不仅可以表示ui元素,也可以表示一些功能性的组件,例如手势检测等 基础组件 文本和字体 对于html当中对应就是lab或者label或者span这样的行内元…

基于yolov2深度学习网络的昆虫检测算法matlab仿真,并输出昆虫数量和大小判决

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022A 3.部分核心程序 .......................................................... for i 1:12 % 遍历结…

Julia编程01:Julia语言介绍

在2020上半年&#xff0c;因为疫情无法返校&#xff0c;所以在家待了半年&#xff0c;期间学习一点了R语言、Python、Julia、linux和C语言&#xff0c;只是学习基础语法并没有项目练习&#xff0c;因此返校半年后差不多都不记得了&#xff0c;现在重新捡起Julia丰富下当时写的笔…

Python 将文件夹中的图片信息导入到 Excel 的表格

引言 在数据处理和管理的日常任务中&#xff0c;经常需要将文件夹中的图片文件信息&#xff08;如文件名、路径、创建日期、大小、分辨率等&#xff09;整理成一个 Excel 表格。这篇博客将介绍如何使用 Python 中的 wxPython 模块创建一个 GUI 应用&#xff0c;用户可以通过这…

用Intellij实现web登录页面时,servlet已经配置好了,但是还是报404

今天看到一个404问题&#xff1a; 用Intellij实现web登录页面时&#xff0c;代码如下图所示。点击运行后会跳转到浏览器&#xff0c;但是输入/login时&#xff0c;浏览器显示404&#xff0c;且无法在控制面板上打印内容&#xff1b;输入/index时&#xff0c;也无法在浏览器上显…

Vue的router.addRoutes不起作用

Vue的router.addRoutes()不起作用解决方案 最近在学习制作后台管理系统的时候&#xff0c;涉及到了权限&#xff0c;在通过后台获取到数据后使用router.addRoutes()时不起作用。 最终发现左侧菜单组件中的路由是根据this.$router.options.routes来渲染的&#xff0c;最终使用…

UDP协议与TCP协议1.2

UDP UDP数据报UDP报头UDP载荷 UDP的报文格式&#xff1a; 这里的UDP长度&#xff0c;描述了整个UDP数据报&#xff0c;占多少个字节&#xff0c;这里整个UDP长度最多是64kb 在UDP中校验和就是使用CRC的方式来完成的 数据在网络传输中是可能会出现错误的&#xff0c;例如比特翻…

Spark SQL 中DataFrame DSL的使用

在上一篇文章中已经大致说明了DataFrame APi,下面我们具体介绍DataFrame DSL的使用。DataFrame DSL是一种命令式编写Spark SQL的方式&#xff0c;使用的是一种类sql的风格语法。 文章链接&#xff1a; 一、单词统计案例引入 import org.apache.spark.sql.{DataFrame, SaveMod…

Proteus仿真小技巧(隔空连线)

用了好几天Proteus了.总结一下使用的小技巧. 目录 一.隔空连线 1.打开添加网络标号 2.输入网络标号 二.常用元件 三.运行仿真 四.总结 一.隔空连线 引出一条线,并在末尾点一下. 1.打开添加网络标号 选择添加网络标号, 也可以先点击按钮,再去选择线(注意不要点端口) 2.…

【调试笔记-20240525-Windows-配置 QEMU/x86_64 运行 OpenWrt-23.05 发行版并搭建 WordPress 博客网站】

调试笔记-系列文章目录 调试笔记-20240525-Windows-配置 QEMU/x86_64 运行 OpenWrt-23.05 发行版并搭建 WordPress 博客网站 文章目录 调试笔记-系列文章目录调试笔记-20240525-Windows-配置 QEMU/x86_64 运行 OpenWrt-23.05 发行版并搭建 WordPress 博客网站 前言一、调试环境…

【EXCEL_VBA_基础知识】15 使用ADO操作外部数据

课程来源&#xff1a;王佩丰老师的《王佩丰学VBA视频教程》&#xff0c;如有侵权&#xff0c;请联系删除&#xff01; 目录 1. 使用ADO链接外部数据源 2. 常用SQL语句&#xff08;Execute(SQL语句)&#xff09; 2.1 查询数据、查询某几个字段、带条件查询、合并两表数据、插…

OpenWrt 23.05 安装中文语言包 教程 软路由实测 系列三

1 web 登录 #更改阿里云下载源&#xff0c;可参考第一篇文章:OpenWrt U盘安装使用 详细教程 x86/64平台 软路由实测 系列一-CSDN博客

【Linux】icmp_seq=1 Destination Host Unreachable

执行ping 命令提示&#xff1a;From 192.168.XX.XX icmp_seq1 Destination Host Unreachable 这个错误消息通常表示以下几种情况之一&#xff1a; 网络连接问题&#xff1a;目标主机可能没有连接到网络&#xff0c;或者网络中的某个路由器无法将数据包转发到目标主机。 目标主…