131. 面试中关于架构设计都需要了解哪些内容?

文章目录

  • 一、社区系统架构组件概览
    • 1. 系统拆分
    • 2. CDN、Nginx静态缓存、JVM本地缓存
    • 3. Redis缓存
    • 4. MQ
    • 5. 分库分表
    • 6. 读写分离
    • 7. ElasticSearch
  • 二、商城系统-亿级商品如何存储
  • 三、对账系统-分布式事务一致性
  • 四、统计系统-海量计数
  • 六、系统设计 - 微软
  • 1、需求收集
    • 2、顶层设计
    • 3、系统核心指标
    • 4、数据存储
  • 七、如何设计一个微博

一、社区系统架构组件概览

一个非常简易的系统架构大致如下:在这里插入图片描述

接下来就以上图为例,剖析每个组件的作用。

1. 系统拆分

通过DDD领域模型,对服务进行拆分,将一个系统拆分为多个子系统,做成微服务。微服务设计时要尽可能做到少扇出,多扇入,根据服务器的承载,进行客户端负载均衡,通过对核心服务的上游服务进行限流和降级改造。

一个服务的代码不要太多,1万行左右,两三万撑死了吧。

大部分的系统,是要进行多轮拆分的,第一次拆分,可能就是将以前的多个模块该拆分开来了,比如说将电商系统拆分成订单系统、商品系统、采购系统、仓储系统、用户系统等等吧。

但是后面可能每个系统又变得越来越复杂了,比如说采购系统里面又分成了供应商管理系统、采购单管理系统,订单系统又拆分成了购物车系统、价格系统、订单管理系统。

2. CDN、Nginx静态缓存、JVM本地缓存

利用Java的模板thymeleaf可以将页面和数据动态渲染好,然后通过Nginx直接返回。动态数据可以从redis中获取。其中redis里的数据由一个缓存服务来进行消费指定的变更服务。

商品数据,每条数据是10kb100条数据是1mb10万条数据是1g。常驻内存的是 200万条商品数据,占用内存是20g,仅仅不到总内存的50%。目前高峰期每秒就是 3500qps左右的请求量。

3. Redis缓存

Redis cluster10台机器,55从,5个节点对外提供读写服务,每个节点的读写高峰QPS可能可以达到每秒5万,5台机器最多是25万读写请求每秒。

注:一般一台Redis实例最大能承受的QPS在16万左右。

32G内存+ 8核CPU + 1T磁盘,但是分配给Redis进程的是10g内存,一般线上生产环境,Redis的内存尽量不要超过10g,超过10g可能会有问题。

因为每个主实例都挂了一个从实例,所以是高可用的,任何一个主实例宕机,都会自动故障迁移,Redis从实例会自动变成主实例继续提供读写服务。

4. MQ

可以通过消息队列对微服务系统进行解耦,异步调用的更适合微服务的扩展。

同时可以应对秒杀活动中的高并发写请求,比如kafka在毫秒延迟基础上可以实现10w级吞吐量。

同时可以使用消息队列保证分布式系统最终一致性。

5. 分库分表

分库分表,可能到了最后数据库层面还是免不了抗高并发的要求,好吧,那么就 将一个数据库拆分为多个库,多个库来扛更高的并发;然后将一个表拆分为多个 表,每个表的数据量保持少一点,提高sql跑的性能。在通讯录、订单和商城商品模块超过千万级别都应及时考虑分表分库。一般单表保存的数据尽量不要超过4千万,否则查询性能可能受损,数据过大时,及时考虑分表处理,实际在需求初期就应该调研量级,考虑分表方案。

6. 读写分离

读写分离,这个就是说大部分时候数据库可能也是读多写少,没必要所有请求都 集中在一个库上吧,可以搞个主从架构,主库写入,从库读取,搞一个读写分离。读流量太多的时候,还可以加更多的从库。比如统计监控类的微服务通过读写分离,只需访问从库就可以完成统计,例如使用ES完成统计诉求,读从库即可。

7. ElasticSearch

Elasticsearch,简称eses是分布式的,分布式天然就可以支撑高并发,因为动不动就可以扩容加机器来扛更高的并发。那么一些比较简单的查询、统计类的操作,比如运营平台上的各地市的汇聚统计,还有一些全文搜索类的操作,比如通讯录和订单的查询,都很适合用es存储。

二、商城系统-亿级商品如何存储

基于Hash取模一致性Hash实现分库分表。

高并发读可以通过多级缓存应对。

大促销热key读的问题通过 redis集群+本地缓存+限流+key加随机值分布在多个实例中

高并发写的问题通过基于Hash取模一致性Hash实现分库分表均匀落盘。

业务分配不均导致的热key读写问题,可以根据业务场景进行range分片,将热点范围下的子key打散。

具体实现: 预先设定主键的生成规则,根据规则进行数据的分片路由,但这种方式会侵入商品各条线主数据的业务规则,更好的方式是基于分片元数据服务器(即每次访问分片前先询问分片元服务器再路由到实际分片),不过会带来复杂性,比如如何保证元数据服务器的一致性和可用性。

三、对账系统-分布式事务一致性

尽量避免分布式事务,单进程用数据库事务,跨进程用消息队列。

主流实现分布式系统事务一致性的方案:

  • 最终一致性:也就是基于MQ的可靠消息投递的机制,

  • 基于重试加确认的的最大努力通知方案。

理论上也可以使用(2PC两阶段提交、3PC三阶段提交、TCC短事务、SAGA长事务方案),但是这些方案工业上落地代价很大,不适合互联网的业界场景。针对金融支付等需要强一致性的场景可以通过前两种方案实现。
在这里插入图片描述

本地数据库事务原理:undo log(原子性) + redo log(持久性) + 数据库锁(原子性&隔离性) + MVCC(隔离性)

分布式事务原理:全局事务协调器(原子性) + 全局锁(隔离性) + DB本地事务(原子性、持久性)

MQ方式实现一致性应该保证以下两点

  • 要求下游MQ消费方一定能成功消费消息。否则转人工介入处理。
  • 千万记得实现幂等性。

四、统计系统-海量计数

中小规模的计数服务(万级)

中小规模量级,最常见的计数方案是采用缓存+DB的存储方案。当计数变更时,先变更计数DB,计数加 1,然后再变更计数缓存,修改计数存储的MemcachedRedis。这种方案比较通用且成熟,但在高并发访问场景,支持不够友好。

在互联网社交系统中,有些业务的计数变更特别频繁,比如微博feed的阅读数,计数的变更次数和访问次数相当,每秒十万到百万级以上的更新量,如果用DB存储,会给DB带来巨大的压力,DB就会成为整个计数服务的瓶颈所在。即便采用聚合延迟更新DB的方案,由于总量特别大,同时请求均衡分散在大量不同的业务端,巨大的写压力仍然是DB的不可承受之重。

大型互联网场景(百万级)
百万及以上量级,建议直接把计数全部存储在Redis中,通过 hash 分拆的方式,可以大幅提升计数服务在Redis集群的写性能,通过主从复制,在master后挂载多个从库,利用读写分离,可以大幅提升计数服务在Redis集群的读性能。而且Redis有持久化机制,不会丢数据。

但也不是万无一失的,要以下方面要考虑。

一方面Redis作为通用型存储来存储计数,内存存储效率低。以存储一个keylong(8字节)idvalue4字节的计数为例,Redis至少需要65个字节左右(以为要记录很多其他元信息),不同版本略有差异。但这个计数理论只需要占用12个字节即可。内存有效负荷只有12/65=18.5%。如果再考虑一个longid需要存4个不同类型的4字节计数,内存有效负荷只有(8+16)/(65*4)= 9.2%

另一方面,Redis所有数据均存在内存,单存储历史千亿级记录,单份数据拷贝需要10T以上,要考虑核心业务上13从,需要40T以上的内存,再考虑多IDC部署,轻松占用上百T内存。就按单机100G内存来算,计数服务就要占用上千台大内存服务器。存储成本太高。

微博、微信、抖音(亿级)

亿级别数据,应该考虑通过以下方式存储

  • 定制数据结构,共享key 紧凑存储,提升计数有效负荷率;
  • 超过阈值后数据保存到SSD硬盘,内存里存索引;
  • keySSD硬盘中读取后,放入到LRU队列中;
  • 自定义主从复制的方式,海量冷数据异步多线程并发复制;

六、系统设计 - 微软

1、需求收集

  • 确认使用的对象
    • ToC:高并发
    • ToB:高可用
  • 系统的服务场景
    • 即时通信:低延迟
    • 游戏:高性能
    • 购物:秒杀-一致性
  • 用户量级
    • 万级:双机
    • 百万:集群
    • 亿级:弹性分布式、容器化编排架构
    • 百万读:3主6从,每个节点的读写高峰QPS可能可以达到每秒5万,可以实现15万,30万读性能
    • 亿级读: 通过CDN、静态缓存、JVM缓存等多级缓存来提高读并发
    • 百万写: 通过消息队列削峰填谷,通过hash分拆,水平扩展分布式缓存
    • 亿级写: redis可以定制数据结构、SSD+内存LRU、冷数据异步多线程复制
    • 持久化: Mysql承受量约为 1KQPS,读写分离提升读并发,分库分表提升写并发

2、顶层设计

核心功能包括什么:

  • 写功能:发送微博

  • 读功能:热点资讯

  • 交互:点赞、关注

3、系统核心指标

  • 系统性能和延迟

  • 边缘计算 | 动静分离 | 缓存 | 多线程 |

  • 可扩展性和吞吐量

  • 负载均衡 | 水平扩展 | 垂直扩展 | 异步 | 批处理 | 读写分离

  • 可用性和一致性

  • 主从复制 | 哨兵模式 | 集群 | 分布式事务

4、数据存储

  • 键值存储 : Redis ( 热点资讯 )

  • 文档存储 : MongoDB ( 微博文档分类)

  • 分词倒排:Elasticsearch(搜索)

  • 列型存储:HbaseBigTable(大数据)

  • 图形存储:Neo4j (社交及推荐)

  • 多媒体:FastDfs(图文视频微博)

七、如何设计一个微博

实现哪些功能:
筛选出核心功能(Post a Tweet,Timeline,News Feed,Follow/Unfollow a user,Register/Login)

承担多大QPS:

  • QPS = 100,那么用我的笔记本作Web服务器就好了
  • QPS = 1K,一台好点的Web服务器也能应付,需要考虑单点故障;
  • QPS = 1m,则需要建设一个1000台Web服务器的集群,考虑动态扩容、负载分担、故障转移
  • 一台SQL Database (Mysql)承受量约为1K的QPS;
  • 一台NoSQL Database (Redis) 约承受量是20k的QPS;
  • 一台NoSQL Database (Memcache) 约承受量是200k的QPS;

微服务战略拆分
在这里插入图片描述

针对不同服务选择不同存储
在这里插入图片描述

设计数据表的结构
在这里插入图片描述

基本差不多就形成了一个解决方案,但是并不是完美的,仍然需要小步快跑的不断的针对消息队列、缓存、分布式事务、分表分库、大数据、监控、可伸缩方面进行优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/638795.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Zoho CRM怎么样?云衔科技为企业提供采购优惠!

企业对于客户关系管理(CRM)系统的需求日益增加,Zoho CRM作为一款备受赞誉的国际CRM服务提供商,凭借其全面的功能、出色的用户体验和卓越的性价比,成为了众多企业数字化转型的得力助手。 Zoho CRM是一款覆盖客户全生命…

【webrtc】m98:Call的创建及Call对音频接收处理

call中多個流共享相同的辅助组件 这几个是与外部共用的 线程传输send控制module 线程任务队列工厂call的辅助组件中各种统计以及接收测的cc是自己创建的 call自己的多个辅助组件是外部传递来的 call 创建多个接收流 这里用一个set 来保存所有指针,并没有要map的意思:

2024年贵州特岗教师招聘报名流程,速速查收哦!

2024年贵州特岗教师招聘报名流程,速速查收哦!

Thingsboard规则链:Alarm Status Filter节点详解

在物联网(IoT)平台的世界里,数据处理与自动化响应是核心功能之一。作为其中的佼佼者,Thingsboard提供了一套强大的规则引擎系统,允许用户基于设备上报的数据构建复杂的自动化逻辑。在这套规则引擎中,Alarm Status Filter节点扮演了…

RedisTemplateAPI:List

文章目录 ⛄介绍⛄List的常见命令有⛄RedisTemplate API❄️❄️添加缓存❄️❄️将List放入缓存❄️❄️设置过期时间(单独设置)❄️❄️获取List缓存全部内容(起始索引,结束索引)❄️❄️从左或从右弹出一个元素❄️❄️根据索引查询元素❄…

AI巨头争相与Reddit合作:为何一个古老的论坛成为AI训练的“宝藏”?

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…

RDDM论文阅读笔记

CVPR2024的残差去噪模型。把diffusion 模型的加噪过程分解为残差diffusion和noise diffusion,其中残差diffusion模拟从target image到degraded image的过程,而noise diffusion则是原来的diffusion过程,即从图片到高斯噪声的加噪过程。前者可以…

Error:(6, 43) java: 程序包org.springframework.data.redis.core不存在

目录 一、在做SpringBoot整合Redis的项目时,报错: 二、尝试 三、解决办法 一、在做SpringBoot整合Redis的项目时,报错: 二、尝试 给依赖加版本号,并且把版本换了个遍,也不行,也去update过ma…

hls.js实现分片播放视频

前言&#xff1a;hls.js官网&#xff1a;hls.js - npm 一、demo——在HTML中使用 <audio id"audio" controls></audio><script src"https://cdn.jsdelivr.net/npm/hls.jslatest"></script> <script>document.addEventList…

华为鸿蒙认证培训 | 讯方技术成为首批鸿蒙原生应用开发及培训服务商

5月20日&#xff0c;鸿蒙原生应用合作交流推介会-深圳站在深圳中洲万豪酒店隆重举行。讯方技术作为鸿蒙钻石服务商受邀参与此次活动&#xff0c;活动由讯方技术总裁刘国锋、执行副总裁刘铭皓、教学资源部部长张俊豪共同出席。 本次活动由深圳政府指导&#xff0c;鸿蒙生态官方…

AI边缘计算高效赋能,打造智慧社区安防管理解决方案

一、背景需求分析 随着信息技术的飞速发展&#xff0c;智慧社区建设已成为提升社区治理和服务水平的重要方向。通过深度整合大数据、云计算和人工智能等前沿技术&#xff0c;致力于构建信息化、智能化的新型社区治理体系。根据《关于深入推进智慧社区建设的意见》的指引&#…

泰克TBS2204B示波器如何设置存储时间?

示波器是电子测量领域中不可或缺的重要仪器之一。泰克公司生产的TBS2204B数字示波器是一款广受欢迎的中端市场产品&#xff0c;其中存储时间设置是用户需要掌握的关键操作之一。 TBS2204B示波器的存储时间设置涉及以下几个方面&#xff1a; 1. 存储时间基准 存储时间基准决定…

办公楼智慧公厕解决方案云平台,助力办公环境品质提升

在现代化的办公楼中&#xff0c;智慧公厕解决方案云平台正发挥着至关重要的作用&#xff0c;有力地助力办公环境品质的提升。 一、云平台优势 智慧公厕云平台具有高效的集成性&#xff0c;将各种设备和信息整合在一起&#xff0c;实现了统一管理和调度。云平台还可以和海量的设…

Threes 特效 炫酷传送门HTML5动画特效

基于Three.js的HTML5 3D动画&#xff0c;这个动画模拟了游戏中的一个炫酷的3D场景&#xff0c;支持360度视角查看&#xff0c;也支持鼠标滚轮进行缩放。画面中主要展现了一个游戏中传送门的效果&#xff0c;同时还有路两边的围栏、灯笼、石头&#xff0c;以及星光闪闪的萤火虫&…

第52期|GPTSecurity周报

GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区&#xff0c;集成了生成预训练Transformer&#xff08;GPT&#xff09;、人工智能生成内容&#xff08;AIGC&#xff09;以及大语言模型&#xff08;LLM&#xff09;等安全领域应用的知识。在这里&#xff0c;您可以找…

重新夺回控制权!原创始人从Synk回购FossID,致力于解决开源许可合规风险

FossID 于 2022 年 9 月被其原始创始人从 Snyk, Inc. 重新收购。为什么 Snyk 在 2021 年收购了 FossID&#xff0c;又在 2022 年将其分拆&#xff0c;以及为什么 FossID 的创始人&#xff08;Oskar Swirtun 和 Jon Aldama&#xff09;后来又回购了该公司&#xff1f; 公司背景 …

Transformer详解(1)-结构解读

Transormer块主要由四个部分组成&#xff0c;注意力层、位置感知前馈神经网络、残差连接和层归一化。 1、注意力层(Multi-Head Attention) 使用多头注意力机制整合上下文语义&#xff0c;它使得序列中任意两个单词之间的依赖关系可以直接被建模而不基于传统的循环结构&#…

如何让社区版IDEA变得好用

如何让社区版IDEA变得好用 背景 收费版的idea功能非常强大&#xff0c;但是费用高。社区版的免费&#xff0c;但是功能被阉割了。如何才能让社区版Idea变得好用&#xff0c;就需要各种插件支持了。经过全局配置编码&#xff0c;maven&#xff0c;jdk版本&#xff0c;在加上各…

舵机(结构,原理,控制方法)

介绍 舵机&#xff0c;全称为伺服马达&#xff08;Servo Motor&#xff09;&#xff0c;是一种能够精确控制角度或位置的电动机。它广泛应用于模型制作、机器人技术、工业自动化等领域。舵机通过接收控制信号&#xff0c;将其转化为机械运动&#xff0c;从而实现精确的控制。 …