指数分布的理解,推导与应用

指数分布的定义

在浙大版的教材中,指数分布的定义如下:
若连续型的随机变量 X X X的概率密度为:
f ( x ) = { 1 θ e − x θ , x>0 0 , 其他 f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}, & \text{x>0}\\ 0, & \text{其他} \end{cases} f(x)={θ1eθx,0,x>0其他
其中 θ > 0 \theta>0 θ>0为常数,则称 X X X服从参数为 θ \theta θ的指数分布,其中 θ \theta θ的含义是事件发生的时间间隔

需要特别注意的是在考研大纲中的形式如下:
f ( x ) = { λ e − λ x , x ≥ 0 0 , 其他 f(x) = \begin{cases} \lambda e^{-\lambda{x}}, & x \geq 0\\ 0, & \text{其他} \end{cases} f(x)={λeλx,0,x0其他
其中 λ \lambda λ每单位时间发生该事件的次数,这种形式更加常见,服从的是参数为 1 λ \frac{1}{\lambda} λ1的指数分布

指数分布分布的理解与公式推导

在之前的文章中我们说过泊松分布https://blog.csdn.net/qq_42692386/article/details/125916391,可以知道泊松分布其实是描述一段时间内事情发生了多少次(例子中就是营业时间内卖了多少个馒头)的概率分布,而现在我们想研究一下事件与事件之间间隔时间(卖两个馒头之间的间隔时间)的服从什么分布呢?
假如某一天没有卖出馒头,比如说周三吧,这意味着,周二最后卖出的馒头,和周四最早卖出的馒头中间至少间隔了一天:
在这里插入图片描述

当然也可能运气不好,周二也没有卖出馒头。那么卖出两个馒头的时间间隔就隔了两天,但无论如何时间间隔都是大于一天的:
在这里插入图片描述
而某一天没有卖出馒头的概率可以由泊松分布得出:

P ( X = 0 ) = λ 0 0 ! e − λ = e − λ P(X=0)=\frac{\lambda^0}{0!}e^{-\lambda}=e^{-\lambda} P(X=0)=0!λ0eλ=eλ

根据上面的分析,卖出两个馒头之间的时间间隔要大于一天,那么必然要包含没有卖出馒头的这天,所以两者的概率是相等的。如果假设随机变量为:

Y = 卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔

那么就有:

P ( Y > 1 ) = P ( X = 0 ) = e − λ P(Y > 1)=P(X=0)=e^{-\lambda} P(Y>1)=P(X=0)=eλ

但是现在问题出现了:之前求出的泊松分布实在限制太大,只告诉了我们每天卖出的馒头数。而两个馒头卖出的事件间隔可能是大于一天,也有可能只间隔了几分钟,所以我们想知道任意的事件间隔里卖出的馒头数量的概率分布,比如半天卖出的馒头数的分布,一小时卖出的馒头数的分布。
稍微扩展下可以得到新的函数:

P ( X = k , t ) = ( λ t ) k k ! e − λ t P(X=k,t)=\frac{({\lambda}{t})^k}{k!}e^{-\lambda{t}} P(X=k,t)=k!(λt)keλt

扩展后得到的这个函数称为泊松过程,具体的推导过程比较复杂,可以自行搜索学习,这里不再赘述。
通过新的这个函数就可知不同的时间段 t t t内卖出的馒头数的分布了( t = 1 t=1 t=1时就是泊松分布):

在这里插入图片描述

根据之前的分析,两次卖出馒头之间的时间间隔大于 t t t的概率,等同于 t t t时间内没有卖出一个馒头的概率,而后者的概率可以由泊松过程给出。还是一样假设随机变量 Y = 卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔 Y=卖出两个馒头之间的时间间隔
则随机变量 Y Y Y的概率:

P ( Y > t ) = P ( X = 0 , t ) = ( λ t ) 0 0 ! e − λ t = e − λ t , t ≥ 0 P(Y > t)=P(X=0,t)=\frac{({\lambda}{t})^0}{0!}e^{-\lambda{t}}=e^{-\lambda{t}},t \geq 0 P(Y>t)=P(X=0,t)=0!(λt)0eλt=eλt,t0

进而有:
P ( Y ≤ t ) = 1 − P ( Y > t ) = 1 − e − λ t P(Y \leq t)=1-P(Y > t)=1-e^{-\lambda{t}} P(Yt)=1P(Y>t)=1eλt

这其实已经得到了 的累积分布函数了:
F ( y ) = P ( Y ≤ y ) = { 1 − e − λ y , y ≥ 0 0 , y < 0 F(y)=P(Y \leq y)= \begin{cases} 1-e^{-\lambda{y}}, & y\geq 0 \\ 0, & y<0 \end{cases} F(y)=P(Yy)={1eλy,0,y0y<0

对其求导就可以得到概率密度函数:
f ( y ) = { λ e − λ y , y ≥ 0 0 , y < 0 f(y)= \begin{cases} \lambda e^{-\lambda{y}}, & y\geq 0 \\ 0, & y<0 \end{cases} f(y)={λeλy,0,y0y<0

这就是卖出馒头的时间间隔 的概率密度函数,也就是指数分布 。

对应参数的含义辨析

和教科书中的定义比较,可以看到对应的形式稍微不一样,但是实际上 λ = 1 θ \lambda=\frac{1}{\theta} λ=θ1,这里 θ \theta θ的含义是事件发生的事件间隔。根据之前的泊松分布定义和推导过程我们知道这里的 λ \lambda λ是对应随机事件在对应时间内的数学期望。在泊松分布中是对应的单位时间内卖出的馒头数量的总和,而在指数分布中,由于我们要研究的是随机事件是对应的随机事件发生间隔,所以对应随机事件的期望(也就是卖出两个馒头的时间间隔的期望)是单位时间发生次数(卖出的馒头数量)的倒数。所以可以将参数 λ \lambda λ改为 1 θ \frac{1}{\theta} θ1,即可得到教科书中参数为 1 θ \frac{1}{\theta} θ1的公式:

举个例子:如果您每天卖了3个馒头( λ = 3 \lambda=3 λ=3),则意味着每卖出2个馒头的间隔期望为 1 3 \frac{1}{3} 31 θ = 1 λ = 1 3 \theta=\frac{1}{\lambda}=\frac{1}{3} θ=λ1=31)。在有的参考书中, θ \theta θ被称为“衰减率”*

指数分布的图像

指数分布中的 λ \lambda λ是每日平均卖出的馒头数,如果 λ \lambda λ越大,也就是说每日卖出的馒头越多,那么两个馒头之间的时间间隔必然越短,这点从图像上也可以看出。

λ \lambda λ较小的时候,比如说 λ = 1 \lambda=1 λ=1吧,也就是说一天只卖出一个馒头,那么馒头卖出间隔时间大于1的可能性就很大(下图是指数分布的概率密度函数的图像,对应的概率是曲线下面积):
在这里插入图片描述

而如果 λ \lambda λ较大的时候,比如说 λ = 3 \lambda=3 λ=3,也就是说一天卖出三个馒头,那么馒头卖出间隔时间大于1的可能性已经变得很小了:
在这里插入图片描述

指数分布期望与方差

指数分布的期望值是:

E ( X ) = 1 λ {E} (X)={\frac {1}{\lambda }} E(X)=λ1
这个很好理解:如果你平均每天卖两个馒头,那么你预期每卖一个馒头的时间是半天。

指数分布的方差:

D ( X ) = 1 λ 2 {D} (X)={\frac {1}{\lambda^2 }} D(X)=λ21

严格的推导过程如下:
首先,指数分布属于连续型随机分布,因此,其期望E(X)为:
E ( X ) = ∫ − ∞ + ∞ ∣ x ∣ f ( x ) d x = ∫ 0 + ∞ x f ( x ) d x = ∫ 0 + ∞ x λ e − λ x d x = 1 λ ∫ 0 + ∞ λ x e − λ x d λ x E(X)=\int_{-\infty}^{+\infty} |x|f(x)dx=\int_{0}^{+\infty}xf(x)dx=\int_{0}^{+\infty}x \lambda e^{-\lambda{x}}dx= \frac{1}{\lambda}\int_{0}^{+\infty} {\lambda}x e^{-\lambda{x}}d{\lambda}x E(X)=+xf(x)dx=0+xf(x)dx=0+xλeλxdx=λ10+λxeλxdλx
u = λ x u=λx u=λx,并使用分步积分法积分,则:
E ( X ) = 1 λ ∫ 0 + ∞ u e − u d u = 1 λ [ ( − e − u − u e − u ) ∣ 0 + ∞ = 1 λ E(X)=\frac{1}{\lambda}\int_{0}^{+\infty}ue^{−u}du=\frac{1}{\lambda}[(−e^{−u}−ue^{−u})\big|_{0}^{+\infty}=\frac{1}{\lambda} E(X)=λ10+ueudu=λ1[(euueu) 0+=λ1

对于指数分布的方差D(X)有:
D ( X ) = E ( X 2 ) − ( E ( X ) ) 2 D(X)=E(X^2)-(E(X))^2 D(X)=E(X2)(E(X))2
其中
E ( X 2 ) = ∫ − ∞ ∞ ∣ x 2 ∣ f ( x ) d x = ∫ 0 ∞ x 2 f ( x ) d x = ∫ 0 ∞ x 2 ⋅ λ e − λ x d x E(X^2)=\int_{-\infty }^{\infty }|x^2|f(x)dx=\int_{0}^{\infty }x^2f(x)dx=\int_{0}^{\infty }x^2\cdot\lambda e^{-\lambda x}dx E(X2)=x2f(x)dx=0x2f(x)dx=0x2λeλxdx
E ( X 2 ) = 1 λ 2 ∫ 0 ∞ λ x λ x e − λ x d λ x E(X^2)=\frac {1} {\lambda^2}\int_{0}^{\infty }\lambda x \lambda xe^{-\lambda x}d\lambda x E(X2)=λ210λxλxeλxdλx

同样令 u = λ x u=λx u=λx,并使用分步积分法积分,则:
E ( X 2 ) = 1 λ 2 ∫ 0 ∞ u 2 e − u d u = 1 λ 2 [ ( − 2 e − u − 2 u e − u − u 2 e − u ) ∣ ( ∞ , 0 ) ] = 1 λ 2 ⋅ 2 = 2 λ 2 E(X^2)=\frac {1} {\lambda^2}\int_{0}^{\infty }u^2e^{-u}du=\frac {1} {\lambda^2}[(-2e^{-u}-2ue^{-u}-u^2e^{-u})|(\infty,0)]=\frac {1} {\lambda^2}\cdot 2=\frac {2} {\lambda^2} E(X2)=λ210u2eudu=λ21[(2eu2ueuu2eu)(,0)]=λ212=λ22
即可利用公式解得
D ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = 2 λ 2 − ( 1 λ ) 2 = 1 λ 2 D(X)=E(X^2)-(E(X))^2=\frac {2} {\lambda^2}-(\frac {1} {\lambda})^2=\frac {1} {\lambda^2} D(X)=E(X2)(E(X))2=λ22(λ1)2=λ21

指数分布的无记忆性

无记忆性是指经过一定的试验次数或时间后,随机变量的条件概率仍服从相同的分布,形象化地说计算后续的分布时可以把过去的经历完全忽略忘记,故称为无记忆性
P ( X > s + t ∣ X > s ) = P ( X > t ) ,    s , t ≥ 0 P(X>s+t \mid X>s)=P(X>t), \quad \ \ s, t \geq 0 P(X>s+tX>s)=P(X>t),  s,t0
指数分布的无记忆性证明如下:
P ( X > s + t ∣ X > s ) = P { ( X > s + t ) ∩ ( X > s ) } P ( X > s ) = P ( X > s + t ) P ( X > s ) = 1 − F ( s + t ) 1 − F ( s ) = e − λ ( s + t ) e − λ ( s ) = e − λ t = P ( X > t ) P(X>s+t \mid X>s)=\frac{P\{(X>s+t) \cap ( X>s)\}}{ P( X>s)} \\ =\frac{P(X>s+t)}{ P( X>s)} =\frac{1-F(s+t)}{ 1-F(s)} \\ =\frac{e^{-\lambda(s+t)}}{e^{-\lambda(s)}}=e^{-\lambda{t}}=P(X>t) P(X>s+tX>s)=P(X>s)P{(X>s+t)(X>s)}=P(X>s)P(X>s+t)=1F(s)1F(s+t)=eλ(s)eλ(s+t)=eλt=P(X>t)

在浙大教材中有个例子:如果X是某一个电器的使用寿命,在使用过 s 小时后,它还能再使用 t 小时的概率,和它一开始算寿命就是 t 小时的概率是一样的。
很多人觉得日常生活中的电子元件用了十年之后不可能还能和新的有一样的预期寿命,实际上这个例子应该要加上一个条件的:如果将电器考虑作理想的电器,器件不会老化。
此时,电器的寿命是随机的。可以视为电器内部彷佛每秒钟都在扔硬币(扔硬币很好理解,不管前面扔了多少次,再扔一次硬币正反面的概率仍是二分之一),扔到了正面,电器就坏了。在这种情况下,我们认为电器的寿命服从指数分布。现实中是不会有理想电器的,但是如果只考虑短时间内的电器寿命,那么就可以将之视作理想电器,认为它的寿命服从指数分布。

指数分布应用实例

假设银行平均每 10 分钟接到一个新电话。客户致电后,确定下一个客户在之后 10 到 15 分钟内致电的可能性。
λ = 1 10 = 0.1 λ =\frac{1}{10}=0.1 λ=101=0.1

则新客户在 10-15 分钟内致电的概率:
P ( 10 < X ≤ 15 ) = P ( X ≤ 15 ) − P ( X ≤ 10 ) = ( 1 – e − 0.1 × 15 ) – ( 1 – e − 0.1 × 10 ) = 0.7769 – 0.6321 = 0.1448 P(10 < X ≤ 15) =P( X ≤ 15)-P(X ≤ 10)= (1 – e^{ -0.1\times15} )– (1 – e^{ -0.1\times10 })= 0.7769 – 0.6321= 0.1448 P(10<X15)=P(X15)P(X10)=(1–e0.1×15)(1–e0.1×10)=0.7769–0.6321=0.1448
所以下一个客户在之后 10-15 分钟内致电的可能性是0.1448 。

参考文章:
https://blog.csdn.net/ccnt_2012/article/details/89875865
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/637977.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

编程基础:掌握运算符与优先级

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、运算符的基石&#xff1a;加减乘除 二、比较运算符&#xff1a;判断数值大小 三、整除…

Tensorflow入门实战 P01-实现手写数字识别mnist

目录 1、背景&#xff1a;MNIST手写数字识别 2、完整代码&#xff08;Tensorflow&#xff09;&#xff1a; 3、运行过程及结果&#xff1a; 4、小结&#xff08;还是很清晰的&#xff09; 5、 展望 &#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客…

智慧水务可视化大屏,一屏纵览水务信息。

智慧水务可视化大屏通常需要展现以下几类信息&#xff1a; 01.实时监测数据&#xff1a; 包括水源水质、水压、水位、水流速等实时监测数据&#xff0c;通过图表、曲线等形式展示&#xff0c;帮助监测人员了解当前水务系统的运行状态。 02.设备运行状态&#xff1a; 展示水泵…

监控上网的软件有哪些?含泪推荐的电脑监控软件

监控上网的软件有很多&#xff0c;企业选择的时候应该遵循什么样的原则呢&#xff1f;鄙人愚见&#xff0c;认为以下四项原则是选择监控软件时首要考虑的。 1、功能需求&#xff1a; 监控软件不应该只是起到控制上网的作用&#xff0c;因为一些泄密行为可能是通过USB接口、打印…

AI大模型的口语练习APP

开发一个使用第三方大模型的口语练习APP涉及多个步骤&#xff0c;从需求分析到部署上线。以下是详细的开发流程和关键步骤&#xff0c;通过系统化的流程和合适的技术选型&#xff0c;可以有效地开发出一个功能丰富、用户体验良好的口语练习APP。北京木奇移动技术有限公司&#…

Ipad air6买什么电容笔?5款超值精品平替电容笔推荐!

电容笔作为ipad的最佳拍档&#xff0c;为学生党和打工人带来了极大的便利&#xff0c;二者搭配效率真的大大提升&#xff0c;但是&#xff0c;如何选购一支适合自己的电容笔呢&#xff1f;作为一个对数码设备非常感兴趣并且有一定了解的人&#xff0c;我根据自己多年的使用经验…

DeepDriving | CUDA编程-03:线程层级

本文来源公众号“DeepDriving”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;CUDA编程-03:线程层级 DeepDriving | CUDA编程-01&#xff1a; 搭建CUDA编程环境-CSDN博客 DeepDriving | CUDA编程-02&#xff1a; 初识CUDA编程-C…

【搜索】BFS

#include <iostream> #include <cstring> #include <queue>using namespace std;const int N 110;typedef pair<int, int> PII;int n, m; int g[N][N], d[N][N];//存放地图//存每一个点到起点的距离int bfs() {queue< PII > q;q.push({0, 0});m…

变量命名的艺术:让你的代码更具可读性

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、引言&#xff1a;为何变量命名如此重要&#xff1f; 二、变量命名的基本规则 1. 避免数…

Threejs路径规划_基于A*算法案例完整版

上节利用了A*实现了基础的路径规划&#xff0c;这节把整个功能完善好&#xff0c;A*算法一方面是基于当前点找到可以到达的点&#xff0c;计算从出发点到此点&#xff0c;以及此点到目的地的总成本&#xff0c;比较出最小的那个&#xff0c;再用最小成本的点继续找到它可以到达…

无线领夹麦克风哪个品牌音质最好,揭秘无线领夹麦哪个牌子好用

​随着社交媒体和内容创作的兴起&#xff0c;清晰可靠的音频捕捉已成为打造高品质作品的关键要素。无线领夹麦克风因其轻巧设计和用户友好的接口而受到青睐&#xff0c;它能够确保你的声音在任何环境下都能被完美捕捉。经过精心测试和对比&#xff0c;以下几款无线领夹麦克风是…

用手机打印需要下载什么软件

在快节奏的现代生活中&#xff0c;打印需求无处不在&#xff0c;无论是工作文件、学习资料还是生活小贴士&#xff0c;都可能需要一纸呈现。然而&#xff0c;传统的打印方式往往受限于时间和地点&#xff0c;让人倍感不便。今天&#xff0c;就为大家推荐一款便捷又省钱的手机打…

解锁合同管理的新路径:低代码与定制开发的完美结合

引言 合同管理在企业中扮演着至关重要的角色。无论是与供应商、客户还是合作伙伴之间的合作&#xff0c;合同都是约束双方责任和权利的关键文档。然而&#xff0c;随着业务的不断增长和全球化的发展&#xff0c;合同管理变得越来越复杂。传统的合同管理方法往往面临着诸多挑战&…

影响程序员发展,首个关于“软件供应链安全”国家标准发布,你该知道的10个问题!【附标准全文】

近日&#xff0c;GB/T 43698-2024《网络安全技术 软件供应链安全要求》作为国内首个软件供应链安全的国标&#xff0c;对于程序员的影响深远。该标准的实施&#xff0c;不仅为程序员提供了明确的软件安全开发指导&#xff0c;还强化了他们在软件开发过程中对安全性的重视。程序…

第十三节:带你梳理Vue2 : watch侦听器

官方解释:> 观察 Vue 实例变化的一个表达式或计算属性函数。回调函数得到的参数为新值和旧值。表达式只接受监督的键路径。对于更复杂的表达式&#xff0c;用一个函数取代<br/>## 1. 侦听器的基本使用侦听器可以监听data对象属性或者计算属性的变化watch是观察属性的…

哈夫曼树的介绍

引入 概述 基本概念 示例 算法实现 存储结构 具体步骤 示例 初始化 合并 示例 代码整合&#xff1a; //哈夫曼树的建立 //定义类型:权值双亲结点左右孩子结点 typedef struct {int weight;int parent;int lchild,rchild; }Hnode,*huffmantree; //建立 1.判断有结点&#xf…

入门四认识HTML

一、HTML介绍 1、Web前端三大核心技术 HTML&#xff1a;负责网页的架构 CSS&#xff1a;负责网页的样式、美化 JS&#xff1a;负责网页的行动 2、什么是HTML HTML是用来描述网页的一种语言。 3、Html标签 单标签<html> 双标签<h>内容</h> 4、标…

如何零基础快速制作商业画册?这篇攻略帮你搞定

随着社会经济的发展&#xff0c;商业画册作为企业形象和产品介绍的重要载体&#xff0c;越来越受到重视。然而&#xff0c;很多企业和个人由于没有设计背景&#xff0c;在面对制作商业画册时往往感到困惑。本文将为你介绍零基础快速制作商业画册的攻略&#xff0c;让你轻松搞定…

Live800:提升客服服务质量,企业应从这几个方面下功夫

客户服务质量&#xff0c;是企业为客户提供优质服务的一个重要衡量指标。通常来说&#xff0c;一个企业的客服部门在其经营活动中发挥着重要作用&#xff0c;是客户与企业之间沟通的桥梁。良好的客服服务&#xff0c;不仅能够提高客户满意度&#xff0c;还能增强企业品牌的美誉…

Java中String类常用方法

写笔记记录自己的学习记录以及巩固细节 目录 1.String类的常用方法 1.1 字符串构造 1.2 String对象的比较 1.2.1 比较两个字符串是否相等 1.2.2 比较两个字符串的大小 1.3 字符串查找 1.4 字符串的转化 1.4.1 字符串转整数 1.4.2 字符串转数字 1.4.3 大小写的转换 1…