从零开始傅里叶变换

从零开始傅里叶变换

1 Overview

Motivation:从时域转换到频域。相当于提取了信号的频率特征,可以做进一步的处理和分析。
在这里插入图片描述

在这里插入图片描述

对于时域内的一个信号 f ( t ) f(t) f(t) ,可以通过傅里叶变换得到频域函数 F ( ω ) F(\omega) F(ω),同样也可以从频域转化为时域。

傅里叶变换:
F ( ω ) = ∫ − ∞ ∞ f ( t ) ⋅ e − i ω t  d t F(\omega)=\int_{-\infty}^{\infty}f(t)\cdot e^{-i\omega t}\text{ d}t F(ω)=f(t)et dt
傅里叶逆变换:
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t  d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t} \text{ d} \omega f(t)=2π1F(ω)et dω

2 傅里叶级数

傅里叶级数:任意周期性函数(波形)都可以表示成多个正余弦函数的线性组合。
f ( t ) = a 0 2 + a 1 cos ⁡ ( ω t ) + b 1 sin ⁡ ( ω t ) + a 2 cos ⁡ ( ω t ) + b 2 sin ⁡ ( ω t ) + ⋯ = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ) \begin{align*} f(t)&=\frac{a_0}{2}+a_1\cos(\omega t)+b_1\sin(\omega t)+a_2\cos(\omega t)+b_2\sin(\omega t)+\cdots\\ &=\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n\cos(n\omega t)+b_n \sin(n\omega t))\\ \end{align*} f(t)=2a0+a1cos(ωt)+b1sin(ωt)+a2cos(ωt)+b2sin(ωt)+=2a0+n=1(ancos(t)+bnsin(t))
其中
a n = 2 T ∫ t 0 t o + T f ( t ) cos ⁡ ( n ω t ) d t b n = 2 T ∫ t 0 t o + T f ( t ) sin ⁡ ( n ω t ) d t a_n = \frac{2}{T} \int_{t_0}^{t_o+T}f(t)\cos(n\omega t)\text{d}t\\ b_n = \frac{2}{T} \int_{t_0}^{t_o+T}f(t)\sin(n\omega t)\text{d}t\\ an=T2t0to+Tf(t)cos(t)dtbn=T2t0to+Tf(t)sin(t)dt

2.1 基向量

为什么一个周期性函数(波形)可以表示成多个正余弦函数的线性组合?

  • Recall 空间中的基向量

    • M M M 维空间的任意一个向量都可以表示为该空间的基向量 Q = { q 1 , q 2 , ⋯   , q M } \mathbf Q=\{\mathbf q_1,\mathbf q_2,\cdots,\mathbf q_M\} Q={q1,q2,,qM} 的线性组合: v = x 1 q 1 + x 2 q 2 + ⋯ + x M q M \mathbf v=x_1\mathbf q_1+x_2\mathbf q_2 + \cdots +x_M \mathbf q_M v=x1q1+x2q2++xMqM
    • M M M 个基向量两两正交: q i ⊤ q j = 0 ,    ( i ≠ j ) \mathbf q_i^\top\mathbf q_j=0,\ \ (i\ne j) qiqj=0,  (i=j)
  • Recall 正交函数

    • 将函数看作向量,连续函数也就是一个维度 M = ∞ M=\infty M= 的向量。即一个在 [ a , b ] [a,b] [a,b] 上有定义的实函数 f ( x ) f(x) f(x) 可以表示为一个 M M M 维的向量 f \mathbf f f f ( x ) = f = ( f ( a ) , f ( a + Δ x ) , f ( a + 2 Δ x ) , ⋯   , f ( a + ( M − 1 ) Δ x ) ) f(x)=\mathbf f = (f(a),f(a+\Delta x),f(a+2\Delta x),\cdots,f(a+(M-1)\Delta x)) f(x)=f=(f(a),f(a+Δx),f(a+x),,f(a+(M1)Δx))。其中 Δ x → 0 \Delta x\to 0 Δx0 b = a + ( M − 1 ) Δ x b=a+(M-1)\Delta x b=a+(M1)Δx

    • 根据上文中提到的

      M M M 维空间的任意一个向量都可以表示为该空间的基向量 Q = { q 1 , q 2 , ⋯   , q M } \mathbf Q=\{\mathbf q_1,\mathbf q_2,\cdots,\mathbf q_M\} Q={q1,q2,,qM} 的线性组合

      那么 f \mathbf f f 可以由 M M M M M M 维的正交向量表示(基向量),找到基向量 g 0 , g 1 , ⋯   , g M − 1 \mathbf g_0, \mathbf g_1,\cdots,\mathbf g_{M-1} g0,g1,,gM1 表示为函数 g 0 , g 1 , ⋯   , g M − 1 g_0,g_1,\cdots,g_{M-1} g0,g1,,gM1
      g 0 = g 0 ( x ) = ( g 0 ( a ) , g 0 ( a + Δ x ) , g 0 ( a + 2 Δ x ) , ⋯   , g 0 ( a + ( M − 1 ) Δ x ) ) g 1 = g 1 ( x ) = ( g 1 ( a ) , g 1 ( a + Δ x ) , g 1 ( a + 2 Δ x ) , ⋯   , g 1 ( a + ( M − 1 ) Δ x ) ) ⋯ g M − 1 = g M − 1 ( x ) = ( g M − 1 ( a ) , g M − 1 ( a + Δ x ) , g M − 1 ( a + 2 Δ x ) , ⋯   , g M − 1 ( a + ( M − 1 ) Δ x ) ) \begin{align*} \mathbf g_0 &= g_0(x)=(g_0(a),g_0(a+\Delta x),g_0(a+2\Delta x),\cdots,g_0(a+(M-1)\Delta x))\\ \mathbf g_1 &= g_1(x)=(g_1(a),g_1(a+\Delta x),g_1(a+2\Delta x),\cdots,g_1(a+(M-1)\Delta x))\\ & \cdots\\ \mathbf g_{M-1} &= g_{M-1}(x)=(g_{M-1}(a),g_{M-1}(a+\Delta x),g_{M-1}(a+2\Delta x),\cdots,g_{M-1}(a+(M-1)\Delta x))\\ \end{align*} g0g1gM1=g0(x)=(g0(a),g0(a+Δx),g0(a+x),,g0(a+(M1)Δx))=g1(x)=(g1(a),g1(a+Δx),g1(a+x),,g1(a+(M1)Δx))=gM1(x)=(gM1(a),gM1(a+Δx),gM1(a+x),,gM1(a+(M1)Δx))
      可以得出 g 0 , g 1 , ⋯   , g M − 1 g_0,g_1,\cdots,g_{M-1} g0,g1,,gM1 是两两正交的函数,也就是: ∫ a b g i ( x ) g j ( x ) d x = 0 ,    ( i ≠ j ) \int_a^b g_i(x)g_j(x)\text{d}x=0,\ \ (i\ne j) abgi(x)gj(x)dx=0,  (i=j)

      那么 f \mathbf f f 可以由 g 0 , g 1 , ⋯   , g M − 1 g_0,g_1,\cdots,g_{M-1} g0,g1,,gM1 的线性组合来表示:
      f ( x ) = f = a 0 g 0 ( x ) + a 1 g 1 ( x ) + ⋯ + a M − 1 g M − 1 ( x ) f(x)=\mathbf f=a_0g_0(x)+a_1g_1(x)+\cdots+a_{M-1}g_{M-1}(x) f(x)=f=a0g0(x)+a1g1(x)++aM1gM1(x)
      为了求系数 a n a_n an,其中 n = 0 , ⋯ M − 1 n=0,\cdots M-1 n=0,M1,先在两边同时乘上 g n ( x ) g_n(x) gn(x),然后再对 x x x 积分
      ∫ a b f ( x ) g n ( x ) d x = ∫ a b ( a 0 g 0 ( x ) + a 1 g 1 ( x ) + ⋯ + a M − 1 g M − 1 ( x ) ) g n ( x )  d x = ∫ a b a 0 g 0 ( x ) g n ( x ) + a 1 g 1 ( x ) g n ( x ) + ⋯ a n g n ( x ) g n ( x ) + ⋯ + a M − 1 g M − 1 ( x ) g n ( x )  d x = ∫ a b 0 + 0 + ⋯ + a n g n ( x ) g n ( x ) + ⋯ + 0  d x = ∫ a b a n g n ( x ) g n ( x )  d x a n = ∫ a b f ( x ) g n ( x ) d x ∫ a b g n ( x ) g n ( x )  d x \begin{align*} \int_a^b f(x)g_n(x)\text{d} x&=\int_a^b (a_0g_0(x)+a_1g_1(x)+\cdots+a_{M-1}g_{M-1}(x))g_n(x) \text { d} x\\ &=\int_a^ba_0g_0(x)g_n(x)+a_1g_1(x)g_n(x)+\cdots a_ng_n(x)g_n(x)+\cdots+a_{M-1}g_{M-1}(x)g_n(x) \text { d} x\\ &=\int_a^b 0+0+\cdots +a_ng_n(x)g_n(x)+\cdots +0 \text { d} x\\ &=\int_a^b a_n g_n(x)g_n(x)\text { d} x\\ a_n&=\frac{\int_a^b f(x)g_n(x)\text d x}{\int_a^b g_n(x)g_n(x)\text { d} x} \end{align*} abf(x)gn(x)dxan=ab(a0g0(x)+a1g1(x)++aM1gM1(x))gn(x) dx=aba0g0(x)gn(x)+a1g1(x)gn(x)+angn(x)gn(x)++aM1gM1(x)gn(x) dx=ab0+0++angn(x)gn(x)++0 dx=abangn(x)gn(x) dx=abgn(x)gn(x) dxabf(x)gn(x)dx

2.2 三角函数系表示 f ( t ) f(t) f(t)

2.2.1 三角函数系的正交性

  • 三角函数系 1 , cos ⁡ ( ω t ) , sin ⁡ ( ω t ) , cos ⁡ ( 2 ω t ) , sin ⁡ ( 2 ω t ) , ⋯   ⋯   , cos ⁡ ( n ω t ) , sin ⁡ ( n ω t ) , ⋯   ⋯ 1,\cos (\omega t),\sin (\omega t),\cos (2 \omega t),\sin (2 \omega t), \cdots \ \cdots,\cos (n\omega t), \sin (n\omega t), \cdots\ \cdots 1,cos(ωt),sin(ωt),cos(2ωt),sin(2ωt), ,cos(t),sin(t),  就是这样的一组在区间 [ t 1 , t 2 ] [t_1,t_2] [t1,t2] 内两两正交的函数,即上文中的 g 0 ( t ) , g 1 ( t ) , ⋯   , g M − 1 ( t ) g_0(t),g_1(t),\cdots,g_{M-1}(t) g0(t),g1(t),,gM1(t)。这里 ω = 2 π t 2 − t 1 \omega = \frac{2\pi}{t_2-t_1} ω=t2t12π

  • 证明三角函数系确实是两两正交的,这些三角函数可以分为五类: 1 , cos ⁡ ( n ω t ) , cos ⁡ ( m ω t ) , sin ⁡ ( n ω t ) , sin ⁡ ( m ω t ) 1,\cos (n\omega t), \cos (m\omega t),\sin (n\omega t), \sin (m\omega t) 1,cos(t),cos(t),sin(t),sin(t)。这里 n ≠ m n\ne m n=m n , m = 1 , 2 , 3 ⋯ n,m=1,2,3\cdots n,m=1,2,3 即正整数。证明这五类两两正交即可

    • 1    ⊥    cos ⁡ ( n ω t ) : ∫ t 1 t 2 cos ⁡ ( n ω t )  d t = 0 1 \ \ \bot \ \ \cos (n\omega t): \int_{t_1}^{t_2} \cos (n\omega t) \text { d} t=0 1    cos(t):t1t2cos(t) dt=0

      由于 ω = 2 π t 2 − t 1 \omega = \frac{2\pi}{t_2-t_1} ω=t2t12π ,第 n n n 项三角函数 f trg n ( t ) = cos ⁡ ( n ω t ) f^{n}_{\text{trg}}(t)=\cos(n\omega t) ftrgn(t)=cos(t) 的周期 T n = 2 π n ω = t 2 − t 1 n T_n=\frac{2\pi}{n\omega}=\frac{t_2-t_1}{n} Tn=2π=nt2t1,可以得出 t 2 − t 1 = n T n t_2-t_1=nT_n t2t1=nTn,即区间 [ t 1 , t 2 ] [t_1,t_2] [t1,t2] cos ⁡ ( n ω t ) \cos (n\omega t) cos(t) 的周期的整数倍,即 [ t 2 , t 1 ] [t_2,t_1] [t2,t1] 一定是 cos ⁡ ( n ω t ) \cos (n\omega t) cos(t) 的一个周期,即可得出 ∫ t 1 t 2 cos ⁡ ( n ω t )  d t = 0 \int_{t_1}^{t_2} \cos (n\omega t) \text { d} t=0 t1t2cos(t) dt=0

    • 1    ⊥    sin ⁡ ( n ω t ) : ∫ t 1 t 2 sin ⁡ ( n ω t )  d t = 0 1 \ \ \bot \ \ \sin (n\omega t): \int_{t_1}^{t_2} \sin (n\omega t) \text { d} t=0 1    sin(t):t1t2sin(t) dt=0

      类似的,通过区间 [ t 2 , t 1 ] [t_2,t_1] [t2,t1] sin ⁡ ( n ω t ) \sin (n\omega t) sin(t) 的一个周期,可以证明 ∫ t 1 t 2 sin ⁡ ( n ω t )  d t = 0 \int_{t_1}^{t_2} \sin (n\omega t) \text { d} t=0 t1t2sin(t) dt=0

    • sin ⁡ ( n ω t ) ⊥ sin ⁡ ( m ω t ) : ∫ t 1 t 2 sin ⁡ ( n ω t ) sin ⁡ ( m ω t )  d t = 0 \sin (n\omega t) \bot \sin (m\omega t): \int_{t_1}^{t_2}\sin (n \omega t) \sin (m\omega t) \text{ d}t=0 sin(t)sin(t):t1t2sin(t)sin(t) dt=0

      根据积化和差:
      ∫ t 1 t 2 sin ⁡ ( n ω t ) sin ⁡ ( m ω t )  d t = ∫ t 1 t 2 − 1 2 ( cos ⁡ ( n + m ) ω t − cos ⁡ ( n − m ) ω t )  d t = − 1 2 ∫ t 1 t 2 cos ⁡ ( n ′ ω t ) − cos ⁡ ( m ′ ω t  d t ) = − 1 2 ( ∫ t 1 t 2 cos ⁡ ( n ′ ω t )  d t − ∫ t 1 t 2 cos ⁡ ( m ′ ω t )  d t ) = 0 \begin{align*} \int_{t_1}^{t_2} \sin (n \omega t) \sin (m\omega t) \text{ d}t&=\int_{t_1}^{t_2} -\frac{1}{2}(\cos(n+m)\omega t-\cos(n-m)\omega t)\text{ d} t\\ &=-\frac{1}{2}\int_{t_1}^{t_2} \cos (n'\omega t)-\cos (m' \omega t \text{ d} t)\\ &=-\frac{1}{2} \left ( \int_{t_1}^{t_2} \cos (n'\omega t)\text{ d} t-\int_{t_1}^{t_2}\cos (m' \omega t) \text{ d} t\right )\\ &=0 \end{align*} t1t2sin(t)sin(t) dt=t1t221(cos(n+m)ωtcos(nm)ωt) dt=21t1t2cos(nωt)cos(mωt dt)=21(t1t2cos(nωt) dtt1t2cos(mωt) dt)=0

    • cos ⁡ ( n ω t ) ⊥ cos ⁡ ( m ω t ) : ∫ t 1 t 2 cos ⁡ ( n ω t ) cos ⁡ ( m ω t )  d t = 0 \cos (n \omega t) \bot \cos (m\omega t): \int_{t_1}^{t_2}\cos (n \omega t) \cos (m\omega t) \text{ d}t=0 cos(t)cos(t):t1t2cos(t)cos(t) dt=0

      类似地,根据积化和差:
      ∫ t 1 t 2 cos ⁡ ( n ω t ) cos ⁡ ( m ω t )  d t = ∫ t 1 t 2 1 2 ( cos ⁡ ( n + m ) ω t + cos ⁡ ( n − m ) ω t )  d t = 1 2 ∫ t 1 t 2 cos ⁡ ( n ′ ω t ) + cos ⁡ ( m ′ ω t )  d t = 1 2 ( ∫ t 1 t 2 cos ⁡ ( n ′ ω t )  d t + ∫ t 1 t 2 cos ⁡ ( m ′ ω t )  d t ) = 0 \begin{align*} \int_{t_1}^{t_2} \cos (n \omega t) \cos (m\omega t) \text{ d}t&=\int_{t_1}^{t_2} \frac{1}{2}(\cos(n+m)\omega t+\cos(n-m)\omega t)\text{ d} t\\ &=\frac{1}{2}\int_{t_1}^{t_2} \cos (n'\omega t)+\cos( m' \omega t) \text{ d} t\\ &=\frac{1}{2} \left ( \int_{t_1}^{t_2} \cos (n'\omega t)\text{ d} t+\int_{t_1}^{t_2}\cos (m' \omega t) \text{ d} t\right )\\ &=0 \end{align*} t1t2cos(t)cos(t) dt=t1t221(cos(n+m)ωt+cos(nm)ωt) dt=21t1t2cos(nωt)+cos(mωt) dt=21(t1t2cos(nωt) dt+t1t2cos(mωt) dt)=0

    • sin ⁡ ( n ω t ) ⊥ cos ⁡ ( m ω t ) : ∫ t 1 t 2 sin ⁡ ( n ω t ) cos ⁡ ( m ω t )  d t = 0 \sin (n \omega t) \bot \cos (m\omega t): \int_{t_1}^{t_2}\sin (n \omega t) \cos (m\omega t) \text{ d}t=0 sin(t)cos(t):t1t2sin(t)cos(t) dt=0 ,此时无需 m ≠ n m\ne n m=n

      由积化和差:
      ∫ t 1 t 2 sin ⁡ ( n ω t ) cos ⁡ ( m ω t )  d t = ∫ t 1 t 2 1 2 ( sin ⁡ ( n + m ) ω t + sin ⁡ ( n − m ) ω t )  d t = 1 2 ∫ t 1 t 2 sin ⁡ ( n ′ ω t ) + sin ⁡ ( m ′ ω t )  d t = 1 2 ( ∫ t 1 t 2 sin ⁡ ( n ′ ω t )  d t + ∫ t 1 t 2 sin ⁡ ( m ′ ω t )  d t ) = 0 \begin{align*} \int_{t_1}^{t_2} \sin (n \omega t) \cos (m\omega t) \text{ d}t&=\int_{t_1}^{t_2} \frac{1}{2}(\sin(n+m)\omega t+\sin(n-m)\omega t)\text{ d} t\\ &=\frac{1}{2}\int_{t_1}^{t_2} \sin (n'\omega t)+\sin (m' \omega t) \text{ d} t\\ &=\frac{1}{2} \left ( \int_{t_1}^{t_2} \sin (n'\omega t)\text{ d} t+\int_{t_1}^{t_2}\sin (m' \omega t) \text{ d} t\right )\\ &=0 \end{align*} t1t2sin(t)cos(t) dt=t1t221(sin(n+m)ωt+sin(nm)ωt) dt=21t1t2sin(nωt)+sin(mωt) dt=21(t1t2sin(nωt) dt+t1t2sin(mωt) dt)=0

  • 也就是说三角函数系有正交性,也就是一个在 [ t 1 , t 2 ] [t_1,t_2] [t1,t2] 有定义的 f ( t ) f(t) f(t),可以表示为
    f ( t ) = a 0 + a 1 cos ⁡ ( ω t ) + b 1 sin ⁡ ( ω t ) + ⋯ + a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) + ⋯ = a 0 + ∑ n = 1 ∞ ( a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ) \begin{align*} f(t)&=a_0+a_1\cos (\omega t)+b_1\sin(\omega t)+\cdots+a_n\cos (n \omega t)+b_n\sin (n\omega t)+\cdots \\ &=a_0+\sum_{n=1}^{\infty}(a_n\cos (n\omega t)+b_n\sin (n\omega t)) \end{align*} f(t)=a0+a1cos(ωt)+b1sin(ωt)++ancos(t)+bnsin(t)+=a0+n=1(ancos(t)+bnsin(t))

2.2.2 三角函数系的系数

如何求得表示 f ( t ) f(t) f(t) 的三角函数系的系数?

  • 那么接下来需要求得 f ( t ) f(t) f(t) 函数的系数。与上文的正交函数类似,与正交函数中的系数 a n a_n an 相比,此处有三处系数 a 0 , a n a_0,a_n a0,an b n b_n bn (此时 n > 0 n>0 n>0

    • 首先求 a 0 a_0 a0 的值,对 t t t 求积分:
      ∫ t 1 t 2 f ( t )  d t = ∫ t 1 t 2 ( a 0 + ∑ n = 1 ∞ ( a n cos ⁡ ( n ω ) t + b n sin ⁡ ( n ω t ) )  d t )  d t = ∫ t 1 t 2 a 0  d t + 0 = ( t 2 − t 1 ) a 0 a 0 = 1 t 2 − t 1 ∫ t 1 t 2 f ( t )  d t = 1 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ cos ⁡ ( 0 ω t )  d t \begin{align*} \int_{t_1}^{t_2}f(t)\text{ d}t&=\int_{t_1}^{t_2}\left (a_0+\sum_{n=1}^{\infty}(a_n\cos (n\omega )t+b_n\sin (n\omega t))\text{ d}t\right )\text{ d}t\\ &=\int_{t_1}^{t_2}a_0\text{ d}t+0\\ &=(t_2-t_1)a_0\\ a_0 &=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(t)\text{ d}t\\ &=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot \cos (0\omega t) \text{ d}t \end{align*} t1t2f(t) dta0=t1t2(a0+n=1(ancos()t+bnsin(t)) dt) dt=t1t2a0 dt+0=(t2t1)a0=t2t11t1t2f(t) dt=t2t11t1t2f(t)cos(0ωt) dt

    • 为了求系数 a n / b n a_n/b_n an/bn,为等式两边乘上 a n / b n a_n/b_n an/bn 的对应项 cos ⁡ n ω t / sin ⁡ n ω t \cos n\omega t/\sin n\omega t cost/sint 再求积分,去掉值为0的正交项,只留下 m = n m=n m=n 时的 cos ⁡ / sin ⁡ ) \cos/\sin) cos/sin) 项。为区分符号设定此时 ω = 2 π t 2 − t 1 \omega=\frac{2\pi}{t_2-t_1} ω=t2t12π
      ∫ t 1 t 2 f ( t ) ⋅ cos ⁡ ( m ω t )  d t = a 0 ∫ t 1 t 2 cos ⁡ ( m ω t )  d t + ∑ n = 1 ∞ ( a n ∫ t 1 t 2 cos ⁡ ( m ω t ) ⋅ cos ⁡ ( n ω t )  d t + b n ∫ t 1 t 2 cos ⁡ ( m ω t ) ⋅ sin ⁡ ( n ω t )  d t ) = 0 + a n ∫ t 1 t 2 cos ⁡ 2 ( n ω t )  d t + 0 \begin{align*} \int_{t_1}^{t_2}f(t)\cdot \cos (m\omega t) \text{ d}t&=a_0\int_{t_1}^{t_2} \cos (m\omega t) \text{ d}t + \sum_{n=1}^{\infty}\left(a_n\int_{t_1}^{t_2} \cos (m\omega t)\cdot \cos (n\omega t)\text{ d} t+b_n \int_{t_1}^{t_2} \cos (m\omega t)\cdot\sin (n\omega t)\text{ d}t\right )\\ &= 0 + a_n \int_{t_1}^{t_2} \cos^2 (n\omega t)\text{ d}t + 0 \end{align*} t1t2f(t)cos(t) dt=a0t1t2cos(t) dt+n=1(ant1t2cos(t)cos(t) dt+bnt1t2cos(t)sin(t) dt)=0+ant1t2cos2(t) dt+0
      利用倍角公式 cos ⁡ 2 α = 2 cos ⁡ 2 α − 1 \cos 2\alpha=2\cos^2\alpha-1 cos2α=2cos2α1,得到:
      ∫ t 1 t 2 f ( t ) ⋅ cos ⁡ ( n ω t )  d t = a n ∫ t 1 t 2 cos ⁡ 2 ( n ω t )  d t = a n 2 ∫ t 1 t 2 ( 1 + cos ⁡ ( 2 n ω t ) )  d t = a n 2 ( ∫ t 1 t 2 1  d t + ∫ t 1 t 2 cos ⁡ ( n ′ ω t )  d t ) = a n ( t 2 − t 1 ) 2 a n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ cos ⁡ ( n ω t )  d t \begin{align*} \int_{t_1}^{t_2}f(t)\cdot \cos (n\omega t) \text{ d}t &= a_n \int_{t_1}^{t_2} \cos^2 (n\omega t)\text{ d}t\\ &=\frac{a_n}{2}\int_{t_1}^{t_2}(1+\cos (2n\omega t))\text{ d}t\\ &=\frac{a_n}{2}\left(\int_{t_1}^{t_2}1\text{ d}t+\int_{t_1}^{t_2}\cos (n'\omega t) \text{ d}t\right)\\ &=\frac{a_n(t_2-t_1)}{2}\\ a_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot \cos (n\omega t) \text{ d}t \end{align*} t1t2f(t)cos(t) dtan=ant1t2cos2(t) dt=2ant1t2(1+cos(2t)) dt=2an(t1t21 dt+t1t2cos(nωt) dt)=2an(t2t1)=t2t12t1t2f(t)cos(t) dt

    • 同理,利用倍角公式 cos ⁡ 2 α = 1 − 2 sin ⁡ 2 α \cos 2\alpha = 1-2\sin^2\alpha cos2α=12sin2α,可得
      ∫ t 1 t 2 f ( t ) ⋅ sin ⁡ ( m ω t )  d t = a 0 ∫ t 1 t 2 sin ⁡ ( m ω t )  d t + ∑ n = 1 ∞ ( a n ∫ t 1 t 2 sin ⁡ ( m ω t ) ⋅ cos ⁡ ( n ω t )  d t + b n ∫ t 1 t 2 sin ⁡ ( m ω t ) ⋅ sin ⁡ ( n ω t )  d t ) = 0 + b n ∫ t 1 t 2 sin ⁡ 2 ( n ω t )  d t + 0 = b n 2 ∫ t 1 t 2 ( 1 − cos ⁡ ( 2 n ω t ) )  d t = b n 2 ( ∫ t 1 t 2 1  d t − ∫ t 1 t 2 cos ⁡ ( n ′ ω t )  d t ) = b n ( t 2 − t 1 ) 2 b n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ sin ⁡ ( n ω t )  d t \begin{align*} \int_{t_1}^{t_2}f(t)\cdot \sin (m\omega t) \text{ d}t&=a_0\int_{t_1}^{t_2} \sin (m\omega t) \text{ d}t + \sum_{n=1}^{\infty}\left(a_n\int_{t_1}^{t_2} \sin (m\omega t)\cdot \cos (n\omega t)\text{ d} t+b_n \int_{t_1}^{t_2} \sin (m\omega t)\cdot\sin (n\omega t)\text{ d}t\right )\\ &= 0 + b_n \int_{t_1}^{t_2} \sin^2 (n\omega t)\text{ d}t + 0\\ &=\frac{b_n}{2}\int_{t_1}^{t_2}(1-\cos (2n\omega t))\text{ d}t\\ &=\frac{b_n}{2}\left(\int_{t_1}^{t_2}1\text{ d}t-\int_{t_1}^{t_2}\cos (n'\omega t) \text{ d}t\right)\\ &=\frac{b_n(t_2-t_1)}{2}\\ b_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot \sin (n\omega t) \text{ d}t \end{align*} t1t2f(t)sin(t) dtbn=a0t1t2sin(t) dt+n=1(ant1t2sin(t)cos(t) dt+bnt1t2sin(t)sin(t) dt)=0+bnt1t2sin2(t) dt+0=2bnt1t2(1cos(2t)) dt=2bn(t1t21 dtt1t2cos(nωt) dt)=2bn(t2t1)=t2t12t1t2f(t)sin(t) dt
      对比 a 0 , a n a_0,a_n a0,an b n b_n bn ,为了能使 n n n 也能表示 n = 0 n=0 n=0 的情况,令 a 0 = 2 a 0 a_0=2a_0 a0=2a0。此时我们可以得到
      f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ) a 0 = 2 t 2 − t 1 ∫ t 1 t 2 f ( t )  d t a n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ cos ⁡ ( n ω t )  d t b n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ sin ⁡ ( n ω t )  d t \begin{align*} f(t)&=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left (a_n\cos(n\omega t)+b_n \sin(n\omega t)\right )\\ a_0&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t) \text{ d}t\\ a_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot \cos (n\omega t) \text{ d}t \\ b_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot \sin (n\omega t) \text{ d}t \end{align*} f(t)a0anbn=2a0+n=1(ancos(t)+bnsin(t))=t2t12t1t2f(t) dt=t2t12t1t2f(t)cos(t) dt=t2t12t1t2f(t)sin(t) dt

至此傅里叶级数可以将任意一个周期函数 f ( t ) f(t) f(t) 分解为多个三角函数的组合,从而完成时域到频域的转换。而傅里叶级数是处理周期函数的,为了处理非周期的普通函数,需要把周期 T T T 2 π 2\pi 2π 趋向于无穷,也就是傅里叶变换。

2.3 复指数函数系表示 f ( t ) f(t) f(t)

2.3.1 复指数函数系的系数

在傅里叶变换之前,我们使用一个更加简单直观的表示,将傅里叶的三角函数形式转化为傅里叶的复指数形式。由欧拉公式 e i θ = cos ⁡ ( θ ) + i sin ⁡ ( θ ) e^{i\theta}=\cos(\theta)+i\sin(\theta) eiθ=cos(θ)+isin(θ) 可得:
cos ⁡ ( n ω t ) = 1 2 ( e i n ω t + e − i n ω t ) sin ⁡ ( n ω t ) = 1 2 i ( e i n ω t − e − i n ω t ) = − i 2 ( e i n ω t − e − i n ω t ) \begin{align*} \cos(n\omega t)&=\frac{1}{2}(e^{in\omega t}+e^{-in\omega t})\\ \sin(n\omega t)&=\frac{1}{2i}(e^{in\omega t}-e^{-in\omega t})=-\frac{i}{2}(e^{in\omega t}-e^{-in\omega t}) \end{align*} cos(t)sin(t)=21(einωt+einωt)=2i1(einωteinωt)=2i(einωteinωt)
代入 f ( x ) f(x) f(x)
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n 2 ( e i n ω t + e − i n ω t ) − i b n 2 ( e i n ω t − e − i n ω t ) ) = a 0 2 + ∑ n = 1 ∞ ( a n − i b n 2 e i n ω t + a n + i b n 2 e − i n ω t ) \begin{align*} f(t)&=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left (\frac{a_n}{2}(e^{in\omega t}+e^{-in\omega t})-\frac{ib_n}{2} (e^{in\omega t}-e^{-in\omega t})\right )\\ &=\frac{a_0}{2}+\sum_{n=1}^\infty \left(\frac{a_n-ib_n}{2}e^{in\omega t} +\frac{a_n+ib_n}{2}e^{-in\omega t}\right) \end{align*} f(t)=2a0+n=1(2an(einωt+einωt)2ibn(einωteinωt))=2a0+n=1(2anibneinωt+2an+ibneinωt)
重新求系数:
a n − i b n 2 = 1 t 2 − t 1 ( ∫ t 1 t 2 f ( t ) ⋅ cos ⁡ ( n ω t )  d t − i ⋅ ∫ t 1 t 2 f ( t ) ⋅ sin ⁡ ( n ω t )  d t ) = 1 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ ( cos ⁡ ( n ω t ) − i ⋅ sin ⁡ ( n ω t ) )  d t = 1 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ ( 1 2 ( e i n ω t + e − i n ω t ) − i ⋅ 1 2 i ( e i n ω t − e − i n ω t ) )  d t = 1 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ e − i n ω t  d t a n + i b n 2 = 1 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ e i n ω t  d t \begin{align*} \frac{a_n-ib_n}{2}&=\frac{1}{t_2-t_1}\left (\int_{t_1}^{t_2}f(t)\cdot \cos (n\omega t) \text{ d}t-i\cdot \int_{t_1}^{t_2}f(t)\cdot \sin (n\omega t) \text{ d}t\right )\\ &=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot(\cos (n\omega t)-i\cdot\sin(n\omega t))\text{ d}t\\ &=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot\left (\frac{1}{2}(e^{in\omega t}+e^{-in\omega t})-i\cdot\frac{1}{2i}(e^{in\omega t}-e^{-in\omega t})\right)\text{ d}t\\ &=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot e^{-in\omega t}\text{ d}t\\ \frac{a_n+ib_n}{2}&=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot e^{in\omega t}\text{ d}t \end{align*} 2anibn2an+ibn=t2t11(t1t2f(t)cos(t) dtit1t2f(t)sin(t) dt)=t2t11t1t2f(t)(cos(t)isin(t)) dt=t2t11t1t2f(t)(21(einωt+einωt)i2i1(einωteinωt)) dt=t2t11t1t2f(t)einωt dt=t2t11t1t2f(t)einωt dt
代入 f ( t ) f(t) f(t) ,为了区分,将原系数 a 0 , a n a_0,a_n a0,an b n b_n bn 中的 t t t 表示为 τ \tau τ 。可得:
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( ( 1 t 2 − t 1 ∫ t 1 t 2 f ( τ ) ⋅ e − i n ω τ  d τ ) e i n ω t + ( 1 t 2 − t 1 ∫ t 1 t 2 f ( τ ) ⋅ e i n ω τ  d τ ) e − i n ω t ) = a 0 2 + 1 t 2 − t 1 ∑ n = 1 ∞ ( ∫ t 1 t 2 f ( τ ) ⋅ e − i n ω τ  d τ ) e i n ω t + 1 t 2 − t 1 ∑ n = 1 ∞ ( ∫ t 1 t 2 f ( τ ) ⋅ e i n ω τ  d τ ) e − i n ω t = 1 t 2 − t 1 ∫ t 1 t 2 f ( τ )  d τ + 1 t 2 − t 1 ∑ n = 1 ∞ ( ∫ t 1 t 2 f ( τ ) ⋅ e − i n ω τ  d τ ) e i n ω t + 1 t 2 − t 1 ∑ n = − ∞ − 1 ( ∫ t 1 t 2 f ( τ ) ⋅ e − i n ω τ  d τ ) e i n ω t = 1 t 2 − t 1 ∑ n = − ∞ ∞ ( ∫ t 1 t 2 f ( τ ) ⋅ e − i n ω τ  d τ ) e i n ω t = ∑ n = − ∞ ∞ c n e i n ω t c n = 1 t 2 − t 1 ∫ t 1 t 2 f ( τ ) ⋅ e − i n ω τ  d τ \begin{align*} f(t)&=\frac{a_0}{2}+\sum_{n=1}^\infty \left(\left(\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(\tau)\cdot e^{-in\omega \tau}\text{ d}\tau\right)e^{in\omega t} +\left(\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(\tau)\cdot e^{in\omega \tau}\text{ d}\tau\right)e^{-in\omega t}\right)\\ &=\frac{a_0}{2}+\frac{1}{t_2-t_1}\sum_{n=1}^\infty \left(\int_{t_1}^{t_2}f(\tau)\cdot e^{-in\omega \tau}\text{ d}\tau \right)e^{in\omega t}+\frac{1}{t_2-t_1}\sum_{n=1}^\infty \left(\int_{t_1}^{t_2}f(\tau)\cdot e^{in\omega \tau}\text{ d}\tau \right)e^{-in\omega t}\\ &=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(\tau) \text{ d}\tau+\frac{1}{t_2-t_1}\sum_{n=1}^\infty \left(\int_{t_1}^{t_2}f(\tau)\cdot e^{-in\omega \tau}\text{ d}\tau \right)e^{in\omega t}+\frac{1}{t_2-t_1}\sum_{n=-\infty}^{-1} \left(\int_{t_1}^{t_2}f(\tau)\cdot e^{-in\omega \tau}\text{ d}\tau \right)e^{in\omega t}\\ &=\frac{1}{t_2-t_1}\sum_{n=-\infty}^\infty \left(\int_{t_1}^{t_2}f(\tau)\cdot e^{-in\omega \tau}\text{ d}\tau \right)e^{in\omega t}\\ &=\sum_{n=-\infty}^{\infty}c_ne^{in\omega t}\\ c_n&=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(\tau)\cdot e^{-in\omega \tau}\text{ d}\tau \end{align*} f(t)cn=2a0+n=1((t2t11t1t2f(τ)einωτ dτ)einωt+(t2t11t1t2f(τ)einωτ dτ)einωt)=2a0+t2t11n=1(t1t2f(τ)einωτ dτ)einωt+t2t11n=1(t1t2f(τ)einωτ dτ)einωt=t2t11t1t2f(τ) dτ+t2t11n=1(t1t2f(τ)einωτ dτ)einωt+t2t11n=1(t1t2f(τ)einωτ dτ)einωt=t2t11n=(t1t2f(τ)einωτ dτ)einωt=n=cneinωt=t2t11t1t2f(τ)einωτ dτ
也就是将 f ( t ) f(t) f(t) 看作基向量 e i n ω t e^{in\omega t} einωt 的线性组合。同样,此时傅里叶级数可以将任意一个周期函数 f ( x ) f(x) f(x) 分解为多个复指数形式的组合,从而完成时域到频域的转换。

2.3.2 复指数函数系的正交性

证明 e i n ω t e^{in\omega t} einωt 确实可以作为基向量,即证明复指数函数系的正交性,即证明对于 n ≠ m n\ne m n=m ,相对应的复指数内积 ⟨ e i n ω t , e i m ω t ⟩ = 0 \left \langle e^{in\omega t},e^{im\omega t} \right \rangle=0 einωt,eimωt=0。注意两个复函数内积时要对一个求共轭,即 ⟨ f , g ⟩ : = ∫ a b f ( t ) g ( t ) ‾  d t \left \langle f,g\right \rangle:=\int_a^b f(t)\overline{g(t)}\text{ d}t f,g:=abf(t)g(t) dt
⟨ e i n ω t , e i m ω t ⟩ = ∫ t 1 t 2 e i n ω t ⋅ e − i m ω t  d t = ∫ t 1 t 2 e i ω t ( n − m )  d t = 1 i ω ( n − m ) e i ω t ( n − m ) ∣ t 1 t 2 = 1 i ω ( n − m ) ( e i ω ( n − m ) t 2 − e i ω ( n − m ) t 1 ) \begin{align*} \left \langle e^{in\omega t},e^{im\omega t} \right \rangle&=\int_{t_1}^{t_2} e^{in\omega t}\cdot e^{-im\omega t} \text{ d}t\\ &=\int_{t_1}^{t_2} e^{i\omega t(n-m)} \text{ d}t\\ &=\frac{1}{i\omega(n-m)}e^{i\omega t(n-m)}\bigg|_{t_1}^{t_2}\\ &=\frac{1}{i\omega(n-m)}\left (e^{i\omega (n-m)t_2}-e^{i\omega (n-m)t_1}\right) \end{align*} einωt,eimωt=t1t2einωteimωt dt=t1t2et(nm) dt=(nm)1et(nm) t1t2=(nm)1(e(nm)t2e(nm)t1)
由于 f cplx n ( t ) = e i n ω t f^{n}_{\text{cplx}}(t)=e^{in\omega t} fcplxn(t)=einωt 的周期 T n = 2 π n ω = t 2 − t 1 n T_n=\frac{2\pi}{n\omega}=\frac{t_2-t_1}{n} Tn=2π=nt2t1 ,可以得出 t 2 − t 1 = n T n t_2-t_1=nT_n t2t1=nTn,即区间 [ t 1 , t 2 ] [t_1,t_2] [t1,t2] f cplx n ( t ) f^{n}_{\text{cplx}}(t) fcplxn(t) 的周期的整数倍,即 [ t 2 , t 1 ] [t_2,t_1] [t2,t1] 一定是 f cplx n ( t ) f^{n}_{\text{cplx}}(t) fcplxn(t) 的一个周期,即 f cplx n ( t 1 ) = f cplx n ( t 2 ) f^{n}_{\text{cplx}}(t_1)=f^{n}_{\text{cplx}}(t_2) fcplxn(t1)=fcplxn(t2),那么当 n = n − m = n ′ n=n-m=n' n=nm=n 时:
⟨ e i n ω t , e i m ω t ⟩ = 1 i ω ( n − m ) ( e i ω n ′ t 2 − e i ω n ′ t 1 ) = 1 i ω ( n − m ) ( f cplx n ′ ( t 2 ) − f cplx n ′ ( t 1 ) ) = 1 i ω ( n − m ) ⋅ 0 = 0 \begin{align*} \left \langle e^{in\omega t},e^{im\omega t} \right \rangle&=\frac{1}{i\omega(n-m)}\left (e^{i\omega n't_2}-e^{i\omega n't_1}\right)\\ &=\frac{1}{i\omega(n-m)}\left (f^{n'}_{\text{cplx}}(t_2)-f^{n'}_{\text{cplx}}(t_1)\right)\\ &=\frac{1}{i\omega(n-m)}\cdot 0\\ &=0 \end{align*} einωt,eimωt=(nm)1(ent2ent1)=(nm)1(fcplxn(t2)fcplxn(t1))=(nm)10=0

2.4 傅里叶级数总结

至此我们得到了周期性信号 f ( t ) f(t) f(t) 的三角函数系表示:
f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ) a 0 = 2 t 2 − t 1 ∫ t 1 t 2 f ( t )  d t a n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ cos ⁡ ( n ω t )  d t b n = 2 t 2 − t 1 ∫ t 1 t 2 f ( t ) ⋅ sin ⁡ ( n ω t )  d t \begin{align*} f(t)&=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left (a_n\cos(n\omega t)+b_n \sin(n\omega t)\right )\\ a_0&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t) \text{ d}t\\ a_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot \cos (n\omega t) \text{ d}t \\ b_n&=\frac{2}{t_2-t_1}\int_{t_1}^{t_2}f(t)\cdot \sin (n\omega t) \text{ d}t \end{align*} f(t)a0anbn=2a0+n=1(ancos(t)+bnsin(t))=t2t12t1t2f(t) dt=t2t12t1t2f(t)cos(t) dt=t2t12t1t2f(t)sin(t) dt
和复指数函数系表示:
f ( t ) = ∑ n = − ∞ ∞ c n e i n ω t c n = 1 t 2 − t 1 ∫ t 1 t 2 f ( τ ) ⋅ e − i n ω τ  d τ \begin{align*} f(t) &=\sum_{n=-\infty}^{\infty}c_ne^{in\omega t}\\ c_n&=\frac{1}{t_2-t_1}\int_{t_1}^{t_2}f(\tau)\cdot e^{-in\omega \tau}\text{ d}\tau \end{align*} f(t)cn=n=cneinωt=t2t11t1t2f(τ)einωτ dτ
其中 t 2 − t 1 t_2-t_1 t2t1 f ( t ) f(t) f(t) 的一个周期, ω = 2 π t 2 − t 1 \omega=\frac{2\pi}{t_2-t_1} ω=t2t12π

3 傅里叶变换

此时的傅里叶级数只是针对周期性函数的,即转换为频域时,频率的个数是有限多个,即频域图是离散的。傅里叶变换就是将傅里叶级数推广到一般的非周期性函数。

接下来对复指数形式的傅里叶级数进行一个从离散到连续的过程,即将傅里叶级数扩展到非周期性函数(周期无限大的函数)中。这里要用到黎曼积分的定义。此时 ω = 2 π t 2 − t 1 \omega=\frac{2\pi}{t_2-t_1} ω=t2t12π, 当周期 t 2 − t 1 → ∞ t_2-t_1\to\infty t2t1 时, ω → 0 \omega \to 0 ω0。此时我们令:
ω n = n ω = 2 π n t 2 − t 1 F ( ω ) = ∫ t 1 t 2 f ( τ ) ⋅ e − i ω τ  d τ \begin{align*} \omega_n&=n\omega=\frac{2\pi n}{t_2-t_1}\\ F(\omega)&=\int_{t_1}^{t_2}f(\tau)\cdot e^{-i\omega \tau}\text{ d}\tau \end{align*} ωnF(ω)==t2t12πn=t1t2f(τ)eτ dτ
那么 f ( t ) f(t) f(t) 可以写成:
f ( t ) = ∑ n = − ∞ ∞ 1 t 2 − t 1 F ( ω n ) e i ω n t \begin{align*} f(t)=\sum_{n=-\infty}^{\infty}\frac{1}{t_2-t_1}F(\omega_n)e^{i\omega_n t} \end{align*} f(t)=n=t2t11F(ωn)eiωnt
根据积分的黎曼和表达式 :
∫ a b f riman ( x )  d x = lim ⁡ λ → 0 ∑ n = 0 ∞ f riman ( x n ) ⋅ λ \int_a^bf_{\text{riman}}(x)\text{ d}x = \underset{\lambda\to 0}{\lim}\sum_{n=0}^{\infty}f_{\text{riman}}(x_n)\cdot \lambda abfriman(x) dx=λ0limn=0friman(xn)λ
则对于 f ( t ) f(t) f(t) 来说:
f riman ( ω ) = F ( ω ) e i ω t λ = Δ ω = ω n − ω n − 1 = 2 π n t 2 − t 1 − 2 π ( n − 1 ) t 2 − t 1 = 2 π t 2 − t 1 \begin{align*} f_{\text{riman}}(\omega)&=F(\omega)e^{i\omega t}\\ \lambda & = \Delta \omega= \omega_n-\omega_{n-1}=\frac{2\pi n}{t_2-t_1} - \frac{2\pi (n-1)}{t_2-t_1}=\frac{2\pi}{t_2-t_1} \end{align*} friman(ω)λ=F(ω)et=Δω=ωnωn1=t2t12πnt2t12π(n1)=t2t12π
因此可以将 f ( t ) f(t) f(t) 写成
f ( t ) = 1 2 π ∑ n = − ∞ ∞ 2 π t 2 − t 1 F ( ω n ) e i ω n t = 1 2 π ∑ n = − ∞ ∞ λ ⋅ f riman ( ω n ) = 1 2 π ∫ − ∞ ∞ f riman ( ω )  d ω = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t  d ω \begin{align*} f(t)&=\frac{1}{2\pi}\sum_{n=-\infty}^{\infty}\frac{2\pi}{t_2-t_1}F(\omega_n)e^{i\omega_n t}\\ &= \frac{1}{2\pi}\sum_{n=-\infty}^{\infty}\lambda \cdot f_{\text{riman}}(\omega_n)\\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty} f_{\text{riman}}(\omega) \text{ d} \omega\\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t} \text{ d} \omega \end{align*} f(t)=2π1n=t2t12πF(ωn)eiωnt=2π1n=λfriman(ωn)=2π1friman(ω) dω=2π1F(ω)et dω
此时周期 t 2 − t 1 → ∞ t_2-t_1\to\infty t2t1,这就是傅里叶变换:
F ( ω ) = ∫ − ∞ ∞ f ( t ) ⋅ e − i ω t  d t F(\omega)=\int_{-\infty}^{\infty}f(t)\cdot e^{-i\omega t}\text{ d}t F(ω)=f(t)et dt
和傅里叶逆变换:
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t  d ω f(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\omega)e^{i\omega t} \text{ d} \omega f(t)=2π1F(ω)et dω

参考资料:

深入理解正交函数 https://zhuanlan.zhihu.com/p/338045910

傅里叶分析之掐死教程 https://zhuanlan.zhihu.com/p/19763358

三角函数和 e i k x e^{ikx} eikx的正交性 https://zhuanlan.zhihu.com/p/597931378

如何理解傅里叶变换公式?https://www.zhihu.com/question/19714540/answer/1119070975

傅里叶变换 https://zhuanlan.zhihu.com/p/104079068

浅谈傅里叶变换:关于傅里叶变换的几种几何学解释 https://mp.weixin.qq.com/s/rkDrHrTJwAbGL0znvnk_pA

傅里叶系列(二)傅里叶变换的推导 https://zhuanlan.zhihu.com/p/41875010

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/635272.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++BuilderXE 如何让listView按文件名数字排序而非字母排序

int m_nDataColSort0; bool IsAsctrue; void __fastcall TForm1::RzListView4Compare(TObject *Sender, TListItem *Item1, TListItem *Item2, int Data, int &Compare) { if(m_nDataColSort0) { //按列表第二列排序 //CompareCompareText(Item1->SubItems-…

FreeRTOS学习——FreeRTOS队列(下)之队列创建

本篇文章记录我学习FreeRTOS队列创建的知识。主要分享队列创建需要使用的初始化函数、队列复位函数。 需要进一步了解FreeRTOS队列的相关知识,读者可以参考以下文章: FreeRTOS学习——FreeRTOS队列(上)_freertos 单元素队列-CSDN博…

第四节 Starter 加载时机和源码理解

tips:每个 springBoot 的版本不同,代码的实现存会存在不同。 上一章,我们聊到 mybatis-spring-boot-starter; 简单分析了它的结构。 这一章我们将着重分析 Starter 的加载机制,并结合源码进行分析理解。 一、加载实际…

基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真。通过魏格纳函数法,来产生多种自加速的光束,设计自加速光束方法,模…

springBoot+springSecurity基本认证流程

springBootspringSecurity认证流程 整合springSecurity 对应springboot版本&#xff0c;直接加依赖&#xff0c;这样版本不会错 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-security</artifactId…

vue实战----网易云音乐案例

1 . 能够掌握Vant组件库使用2 . 熟练查阅Vant组件库文档3 . 能够完成网易云音乐案例 案例-网易云音乐 1.本地接口 目标&#xff1a;下载网易云音乐node接口项目, 在本地启动, 为我们vue项目提供数据支持 2.本地接口启动 目标&#xff1a;启动本地node服务_拿到数据 文档: …

Golang创建文件夹

方法 package zdpgo_fileimport ("os" )// AddDir 创建文件夹 func AddDir(dir string) error {if !IsExist(dir) {return os.MkdirAll(dir, os.ModePerm)}return nil }测试 package zdpgo_fileimport "testing"func TestAddDir(t *testing.T) {data : […

二叉树(详解)

在了解二叉树之前呢我们先来了解一下树形结构&#xff0c;因为二叉树就是树形结构的一种特殊情况&#xff0c;它有这非常好的性质&#xff0c;是很常用的一种结构。 目录 一.什么是树形结构&#xff1f; 二.树形结构常见的名词 三.树的存储 四.二叉树 1.二叉树的概念 2.…

学习记录16-反电动势

一、反电动势公式 在负载下反电势和端电压的关系式为&#xff1a;&#x1d448;&#x1d43c;&#x1d445;&#x1d43f;*&#xff08;&#x1d451;&#x1d456; / &#x1d451;&#x1d461;&#xff09;&#x1d438; E为线圈电动势、 &#x1d713; 为磁链、f为频率、N…

网络协议——Modbus-TCP

目录 1、简介 2、Modbus-TCP与Modbus-RTU的区别 3、消息格式 4、功能码01H 5、功能码02H 6、功能码03H 7、功能码04H 8、功能码05H 9、功能码06H 10、功能码0FH 11、功能码10H 1、简介 Modbus-TCP&#xff08;Modbus Transmission Control Protocol&#xff09;是一…

基于Django的美团药品数据分析与可视化系统,有多用户功能,可增删改查数据

背景 随着电子商务和健康产业的迅速发展&#xff0c;药品行业数据的分析和可视化变得愈发重要。基于Django的美团药品数据分析与可视化系统的研究背景凸显了对药品数据的深入挖掘和分析的需求。该系统不仅具备多用户功能&#xff0c;允许不同角色的用户进行数据管理和分析&…

2024最新流媒体在线音乐系统网站源码| 音乐社区 | 多语言 | 开心版

简介&#xff1a; 2024最新流媒体在线音乐系统网站源码| 音乐社区 | 多语言 | 开心版 下载地址 https://www.kuaiyuanya.com/product/article/index/id/33.html 图片&#xff1a;

【无重复字符的最长子串】python,滑动窗口+哈希表

滑动窗口哈希表 哈希表 seen 统计&#xff1a; 指针 j遍历字符 s&#xff0c;哈希表统计字符 s[j]最后一次出现的索引 。 更新左指针 i &#xff1a; 根据上轮左指针 i 和 seen[s[j]]&#xff0c;每轮更新左边界 i &#xff0c;保证区间 [i1,j] 内无重复字符且最大。 更新结…

高铁VR虚拟全景展示提升企业实力和形象

步入VR的神奇世界&#xff0c;感受前所未有的汽车展示体验。VR虚拟现实技术以其独特的沉浸式模拟&#xff0c;让你仿佛置身于真实展厅之中&#xff0c;尽情探索汽车的每一处细节。 一、定制化展示&#xff0c;随心所欲 VR汽车虚拟展厅打破空间束缚&#xff0c;让汽车制造商能够…

区块链开发:区块链软件开发包装相关解析

区块链开发是指设计、构建和维护基于区块链技术的应用程序或系统的过程。区块链是一种分布式账本技术&#xff0c;它通过去中心化的方式记录和验证数据&#xff0c;确保数据的透明性、不可篡改性和安全性。区块链开发者使用各种编程语言和框架来创建这些应用程序。 在加密货币领…

C++ sort排序的总和应用题

第1题 sort排序1 时限&#xff1a;1s 空间&#xff1a;256m 输入n个数&#xff0c;将这n个数从小到大排序&#xff0c;输出。 输入格式 第1行&#xff0c;一个正整数n&#xff08;n<100&#xff09; 第2行&#xff0c;n个正整数&#xff0c;小于100 输出格式 n个整…

Windows安装mingw32/w64

1.下载 MinGW-w64 WinLibs - GCCMinGW-w64 compiler for Windows Releases niXman/mingw-builds-binaries (github.com) MinGW-w64、UCRT 和 MSVCRT 是 Windows 平台上常用的 C/C 运行库&#xff0c;它们有以下不同点&#xff1a; MinGW-w64&#xff1a;是一个基于 GCC 的…

【Hive SQL 每日一题】分析电商平台的用户行为和订单数据

需求描述 假设你是一位数据分析师&#xff0c;负责分析某电商平台的用户行为和订单数据&#xff0c;平台上有多个用户&#xff0c;用户可以在不同的日期下单&#xff0c;每个订单包含多个商品。请你完成相关业务分析&#xff0c;帮助平台优化运营策略和用户体验。 数据准备 …

NDIS小端口驱动(五)

在需要的时候&#xff0c;我们也许需要NDIS微型端口程序信息&#xff0c;下面会从多个方面来讨论如何查询NDIS微型端口驱动。 查询无连接微型端口驱动程序 若要查询无连接微型端口驱动程序维护的 OID&#xff0c;绑定协议调用 NdisOidRequest 并传递 一个NDIS_OID_REQUEST 结…

【SQL每日一练】查询“OCCUPATIONS”中的“Occupation”列并按Doctor、Professor、Singer、Actor列输出

文章目录 题目一、分析二、题解1.SqlServer2.MySQL3.Oracle 总结 题目 查询“OCCUPATIONS”中的“Occupation”列&#xff0c;使每个姓名按字母顺序排序&#xff0c;并显示在其相应的“职业》下方。输出列标题应分别为Doctor、Professor、Singer和Actor。 注意&#xff1a;当不…