【python量化交易】—— 双均线择时策略 - Qteasy自定义交易策略【附源码】

使用qteasy自定义并回测双均线交易策略

  • 使用qteasy自定义并回测一个双均线择时策略
    • 策略思想
    • 导入qteasy模块
    • 创建一个新的策略
    • 回测交易策略,查看结果

使用qteasy自定义并回测一个双均线择时策略

我们今天使用qteasy来回测一个双均线择时交易策略,qteasy是一个功能全面且易用的量化交易策略框架,Github地址在这里。使用它,能轻松地获取历史数据,创建交易策略并完成回测和优化,还能实盘运行。项目文档在这里。

为了继续本章的内容,您需要安装qteasy【教程1】,并下载历史数据到本地【教程2、),详情可以参考更多教程【教程3】。

建议您先按照前面教程的内容了解qteasy的使用方法,然后再参考这里的例子创建自己的交易策略。

策略思想

本策略根据交易目标的其日K线数据建立简单移动平均线的双均线交易模型,
交易策略如下:

策略包含两个参数:短周期天数S、长周期天数L
分别以两个不同的周期计算交易标的日K线收盘价的移动平均线,得到两根移动均线,以S为周期计算的均线为快均线,以L为周期计算的均线为慢均线,根据快慢均线的交叉情况产生交易信号:

  1. 当快均线由下向上穿越慢均线时全仓买入交易标的
  2. 当快均线由上向下穿越短均线时平仓

模拟回测交易:

  • 回测数据为:沪深300指数(000300.SH)
  • 回测周期为2011年1月1日到2020年12月31日
  • 生成交易结果图表

策略参数优化:

  • 同样使用HS300指数,在2011年至2020年共十年的历史区间上搜索最佳策略参数
  • 并在2020年至2022年的数据上进行验证
  • 输出30组最佳参数的测试结果

导入qteasy模块

import qteasy as qt

创建一个新的策略

使用qt.RuleIterator策略基类,可以创建规则迭代策略,
这种策略可以把相同的规则迭代应用到投资组合中的所有股票上,适合在一个投资组合
中的所有股票上应用同一种择时规则。

from qteasy import RuleIterator
# 创建双均线交易策略类
class Cross_SMA_PS(RuleIterator):
    """自定义双均线择时策略策略,产生的信号类型为交易信号
        这个均线择时策略有两个参数:
            - FMA 快均线周期
            - SMA 慢均线周期
        策略跟踪上述两个周期产生的简单移动平均线,当两根均线发生交叉时
        直接产生交易信号。
    """
    def __init__(self):
        """
        初始化交易策略的参数信息和基本信息
        """
        super().__init__(
            pars=(30, 60),  # 策略默认参数是快均线周期30, 慢均线周期60
            par_count=2,  # 策略只有长短周期两个参数
            par_types=['int', 'int'],  # 策略两个参数的数据类型均为整型变量
            par_range=[(10, 100), (10, 200)],  # 两个策略参数的取值范围
            name='CROSSLINE',  # 策略的名称
            description='快慢双均线择时策略',  # 策略的描述
            data_types='close',  # 策略基于收盘价计算均线,因此数据类型为'close'
            window_length=200,  # 历史数据窗口长度为200,每一次交易信号都是由它之前前200天的历史数据决定的
        )

    # 策略的具体实现代码写在策略的realize()函数中
    # 这个函数接受多个参数: h代表历史数据, r为参考数据, t为交易数据,pars代表策略参数
    # 请参阅doc_string或qteasy文档获取更多信息
    def realize(self, h, r=None, t=None, pars=None):
        """策略的具体实现代码:
         - f: fast, 短均线计算日期;
         - s: slow: 长均线计算日期;
        """
        from qteasy.tafuncs import sma
        # 获取传入的策略参数
        f, s= pars
        # 计算长短均线的当前值和昨天的值
        # 由于h是一个M行N列的ndarray,包含多种历史数据类型
        # 使用h[:, N]获取第N种数据类型的全部窗口历史数据
        # 由于策略的历史数据类型为‘close’(收盘价),
        # 因此h[:, 0]可以获取股票在窗口内的所有收盘价
        close = h[:, 0]
        # 使用qt.sma计算简单移动平均价
        s_ma = sma(close, s)
        f_ma = sma(close, f)
        
        # 为了考察两条均线的交叉, 计算两根均线昨日和今日的值,以便判断
        s_today, s_last = s_ma[-1], s_ma[-2]
        f_today, f_last = f_ma[-1], f_ma[-2]
        
        # 根据观望模式在不同的点位产生交易信号
        # 在PS信号类型下,1表示全仓买入,-1表示卖出全部持有股份
        # 关于不同模式下不同信号的含义和表示方式,请查阅
        # qteasy的文档。
        
        # 当快均线自下而上穿过上边界,发出全仓买入信号
        if (f_last < s_last) and (f_today > s_today):  
            return 1
        # 当快均线自上而下穿过上边界,发出全部卖出信号
        elif (f_last > s_last) and (f_today < s_today):  
            return -1
        else:  # 其余情况不产生任何信号
            return 0

回测交易策略,查看结果

使用历史数据回测交易策略,使用历史数据生成交易信号后进行模拟交易,记录并分析交易结果

# 定义好策略后,定一个交易员对象,引用刚刚创建的策略,根据策略的规则
# 设定交易员的信号模式为PS
# PS表示比例交易信号,此模式下信号在-1到1之间,1表示全仓买入,-1表示
# 全部卖出,0表示不操作。
op = qt.Operator([Cross_SMA_PS()], signal_type='PS')

# 设置op的策略参数
op.set_parameter(0, 
                 pars= (20, 60)  # 设置快慢均线周期分别为10天、166天
                )

# 设置基本回测参数,开始运行模拟交易回测
res = qt.run(op, 
             mode=1,  # 运行模式为回测模式
             asset_pool='000300.SH',  # 投资标的为000300.SH即沪深300指数
             invest_start='20110101',  # 回测开始日期
             visual=True  # 生成交易回测结果分析图
            )

交易结果如下;

     ====================================
     |                                  |
     |       BACK TESTING RESULT        |
     |                                  |
     ====================================

qteasy running mode: 1 - History back testing
time consumption for operate signal creation: 36.2ms
time consumption for operation back looping:  718.5ms

investment starts on      2011-01-04 00:00:00
ends on                   2021-02-01 00:00:00
Total looped periods:     10.1 years.

-------------operation summary:------------

          Sell Cnt Buy Cnt Total Long pct Short pct Empty pct
000300.SH    24       25     49   52.8%      0.0%     47.2%   

Total operation fee:     ¥      861.65
total investment amount: ¥  100,000.00
final value:              ¥  117,205.20
Total return:                    17.21% 
Avg Yearly return:                1.59%
Skewness:                         -1.11
Kurtosis:                         13.19
Benchmark return:                69.85% 
Benchmark Yearly return:          5.39%

------strategy loop_results indicators------ 
alpha:                           -0.044
Beta:                             1.001
Sharp ratio:                     -0.029
Info ratio:                      -0.020
250 day volatility:               0.153
Max drawdown:                    47.88% 
    peak / valley:        2015-06-08 / 2017-06-16
    recovered on:         Not recovered!


===========END OF REPORT=============

从上面的交易结果可以看到,十年间买入25次卖出24次,持仓时间为52%,最终收益率只有17.2%。

下面是交易结果的可视化图表展示

在这里插入图片描述

交叉线交易策略的长短周期选择很重要,可以使用qteasy来搜索最优的策略参数:

# 策略参数的优化
# 
# 设置op的策略参数
op.set_parameter(0, 
                 opt_tag=1  # 将op中的策略设置为可优化,如果不这样设置,将无法优化策略参数
                )
res = qt.run(op, mode=2, 
             opti_start='20110101',  # 优化区间开始日期
             opti_end='20200101',  # 优化区间结束日期
             test_start='20200101',  # 独立测试开始日期
             test_end='20220101',  # 独立测试结束日期
             opti_sample_count=1000  # 一共进行1000次搜索
            )

策略优化可能会花很长时间,qt会显示一个进度条:

[########################################]1000/1000-100.0%  best performance: 226061.246
Optimization completed, total time consumption: 28"964
[########################################]30/30-100.0%  best performance: 226061.246

优化完成,显示最好的30组参数及其相关信息:

==================================== 
|                                  |
|       OPTIMIZATION RESULT        |
|                                  |
====================================

qteasy running mode: 2 - Strategy Parameter Optimization

investment starts on 2011-01-04 00:00:00
ends on 2021-12-31 00:00:00
Total looped periods: 11.0 years.
total investment amount: ¥   100,000.00
Reference index type is 000300.SH at IDX
Total Benchmark rtn: 54.89% 
Average Yearly Benchmark rtn rate: 4.06%
statistical analysis of optimal strategy messages indicators: 
total return:        98.11% ± 8.85%
annual return:       6.41% ± 0.42%
alpha:               -inf ± nan
Beta:                -inf ± nan
Sharp ratio:         -inf ± nan
Info ratio:          0.004 ± 0.002
250 day volatility:  0.150 ± 0.005
other messages indicators are listed in below table

   Strategy items Sell-outs Buy-ins ttl-fee      FV      ROI   Benchmark rtn  MDD 
0     (13, 153)      14.0     14.0    687.05 190,792.39  90.8%     54.9%     32.8%
1     (22, 173)       8.0      8.0    395.88 190,814.17  90.8%     54.9%     31.6%
2     (39, 153)       9.0      9.0    472.15 192,264.81  92.3%     54.9%     32.4%
3     (40, 161)      11.0     11.0    560.40 191,355.89  91.4%     54.9%     31.6%
4     (25, 117)      12.0     13.0    628.58 192,098.97  92.1%     54.9%     31.6%
5     (28, 177)       7.0      7.0    330.99 192,535.14  92.5%     54.9%     31.6%
6     (19, 183)       8.0      8.0    393.19 191,723.19  91.7%     54.9%     31.6%
7     (19, 185)       7.0      7.0    321.65 192,112.23  92.1%     54.9%     31.6%
8     (16, 165)       8.0      8.0    367.36 192,663.11  92.7%     54.9%     31.6%
9     (37, 170)       8.0      8.0    406.04 192,756.35  92.8%     54.9%     31.6%
10    (24, 167)       9.0      9.0    434.69 193,170.89  93.2%     54.9%     31.6%
11    (33, 173)       6.0      6.0    296.75 194,352.40  94.4%     54.9%     31.6%
12    (35, 172)       6.0      6.0    296.42 194,090.45  94.1%     54.9%     31.6%
13     (81, 82)      66.0     67.0  4,074.64 193,209.43  93.2%     54.9%     43.3%
14    (18, 192)       8.0      8.0    375.54 194,179.11  94.2%     54.9%     32.0%
15    (39, 149)       7.0      7.0    330.31 194,549.12  94.5%     54.9%     31.6%
16     (17, 21)      90.0     91.0  5,375.15 195,955.66  96.0%     54.9%     27.9%
17    (27, 168)       8.0      8.0    356.07 194,993.23  95.0%     54.9%     31.6%
18     (59, 70)      27.0     28.0  1,517.79 196,081.66  96.1%     54.9%     41.0%
19    (20, 181)       7.0      7.0    324.45 196,273.52  96.3%     54.9%     31.6%
20    (11, 175)       9.0      9.0    441.25 196,223.57  96.2%     54.9%     31.6%
21    (10, 178)      12.0     12.0    592.85 198,623.15  98.6%     54.9%     31.6%
22    (28, 104)      13.0     14.0    766.09 200,232.97 100.2%     54.9%     31.8%
23    (23, 170)       8.0      8.0    412.78 203,044.62 103.0%     54.9%     31.6%
24    (11, 160)      17.0     17.0    859.76 204,142.24 104.1%     54.9%     31.6%
25     (80, 85)      33.0     34.0  2,102.59 210,103.70 110.1%     54.9%     43.4%
26    (25, 166)       9.0      9.0    450.67 205,575.49 105.6%     54.9%     31.6%
27    (10, 162)      17.0     17.0  1,002.46 214,217.37 114.2%     54.9%     31.6%
28     (61, 66)      42.0     43.0  2,630.56 219,235.18 119.2%     54.9%     36.9%
29     (19, 24)      77.0     78.0  4,899.88 226,061.25 126.1%     54.9%     25.0%

===========END OF REPORT=============

这三十组参数会被用于独立测试,以检验它们是否过拟合:

[########################################]30/30-100.0%  best performance: 133297.532
==================================== 
|                                  |
|       OPTIMIZATION RESULT        |
|                                  |
====================================

qteasy running mode: 2 - Strategy Parameter Optimization

investment starts on 2020-01-02 00:00:00
ends on 2021-12-31 00:00:00
Total looped periods: 2.0 years.
total investment amount: ¥   100,000.00
Reference index type is 000300.SH at IDX
Total Benchmark rtn: 18.98% 
Average Yearly Benchmark rtn rate: 9.09%
statistical analysis of optimal strategy messages indicators: 
total return:        22.91% ± 9.01%
annual return:       10.80% ± 4.25%
alpha:               -0.015 ± 0.041
Beta:                1.000 ± 0.000
Sharp ratio:         0.857 ± 0.200
Info ratio:          0.022 ± 0.021
250 day volatility:  0.178 ± 0.007
other messages indicators are listed in below table

   Strategy items Sell-outs Buy-ins ttl-fee     FV      ROI  Benchmark rtn  MDD 
0     (13, 153)       4.0      4.0   182.60 124,409.92 24.4%     19.0%     15.9%
1     (40, 161)       3.0      3.0   138.74 118,359.00 18.4%     19.0%     17.0%
2     (22, 173)       2.0      2.0    93.49 126,071.63 26.1%     19.0%     15.2%
3     (19, 183)       2.0      2.0    93.90 129,292.01 29.3%     19.0%     15.2%
4     (25, 117)       1.0      2.0    81.75 129,142.22 29.1%     19.0%     15.2%
5     (39, 153)       3.0      3.0   143.88 128,106.78 28.1%     19.0%     15.2%
6     (19, 185)       1.0      1.0    42.70 126,797.97 26.8%     19.0%     15.2%
7     (28, 177)       1.0      1.0    42.66 126,448.59 26.4%     19.0%     15.2%
8     (16, 165)       1.0      1.0    42.64 126,241.62 26.2%     19.0%     15.2%
9      (81, 82)      16.0     17.0   621.41  91,210.11 -8.8%     19.0%     20.3%
10    (37, 170)       2.0      2.0    93.28 126,103.26 26.1%     19.0%     15.2%
11    (24, 167)       2.0      2.0    92.94 123,720.72 23.7%     19.0%     15.2%
12    (35, 172)       1.0      1.0    42.86 128,377.96 28.4%     19.0%     15.2%
13    (18, 192)       2.0      2.0    84.91 133,297.53 33.3%     19.0%     15.2%
14    (33, 173)       1.0      1.0    42.97 129,519.55 29.5%     19.0%     15.2%
15    (39, 149)       1.0      1.0    42.53 125,231.92 25.2%     19.0%     15.2%
16    (27, 168)       1.0      1.0    42.78 127,628.65 27.6%     19.0%     15.2%
17     (17, 21)      19.0     20.0   886.06 110,117.03 10.1%     19.0%     16.4%
18     (59, 70)       5.0      6.0   276.46 128,273.29 28.3%     19.0%     20.1%
19    (20, 181)       1.0      1.0    42.78 127,628.65 27.6%     19.0%     15.2%
20    (11, 175)       2.0      2.0    82.10 125,706.51 25.7%     19.0%     15.2%
21    (28, 104)       2.0      3.0   131.99 125,189.61 25.2%     19.0%     15.2%
22    (10, 178)       3.0      3.0   132.35 127,100.60 27.1%     19.0%     15.2%
23    (23, 170)       2.0      2.0    93.52 126,385.21 26.4%     19.0%     15.2%
24    (11, 160)       4.0      4.0   179.66 124,113.04 24.1%     19.0%     15.4%
25    (25, 166)       2.0      2.0    93.23 126,539.86 26.5%     19.0%     15.2%
26     (80, 85)       8.0      9.0   342.77 100,764.28  0.8%     19.0%     18.9%
27    (10, 162)       7.0      7.0   291.80 113,699.46 13.7%     19.0%     16.2%
28     (61, 66)       9.0     10.0   428.25 117,497.81 17.5%     19.0%     22.6%
29     (19, 24)      17.0     18.0   774.83 114,216.87 14.2%     19.0%     15.6%

===========END OF REPORT=============

参数优化结果以及各个指标的可视化图表展示:

在这里插入图片描述

优化之后我们可以检验一下找到的最佳参数:

# 从优化结果中取出一组参数试验一下:
op.set_parameter(0, 
                 pars= (25, 166)  # 修改策略参数,改为短周期25天,长周期166天
                )

# 重复一次测试,除策略参数意外,其他设置不变
res = qt.run(op, 
             mode=1,  
             asset_pool='000300.SH',  
             invest_start='20110101',  
             visual=True  
            )
     ====================================
     |                                  |
     |       BACK TESTING RESULT        |
     |                                  |
     ====================================

qteasy running mode: 1 - History back testing
time consumption for operate signal creation: 30.7ms
time consumption for operation back looping:  721.6ms

investment starts on      2011-01-04 00:00:00
ends on                   2021-02-01 00:00:00
Total looped periods:     10.1 years.

-------------operation summary:------------

          Sell Cnt Buy Cnt Total Long pct Short pct Empty pct
000300.SH    7        8      15   50.7%      0.0%     49.3%   

Total operation fee:     ¥      348.02
total investment amount: ¥  100,000.00
final value:              ¥  217,727.40
Total return:                   117.73% 
Avg Yearly return:                8.02%
Skewness:                         -0.98
Kurtosis:                         14.70
Benchmark return:                69.85% 
Benchmark Yearly return:          5.39%

------strategy loop_results indicators------ 
alpha:                             -inf
Beta:                              -inf
Sharp ratio:                       -inf
Info ratio:                       0.005
250 day volatility:               0.143
Max drawdown:                    31.58% 
    peak / valley:        2015-06-08 / 2015-07-08
    recovered on:         2018-01-22


===========END OF REPORT=============

优化后总回报率达到了117%,比优化前的参数好很多。

优化后的结果可视化图表如下:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/631944.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

计算机发展史故事【17】

任天堂崛起 七十年代美国雅达利公司开创一个高科技的电脑游戏业。无独有偶&#xff0c;一家专营电脑游戏机的日本任天堂公司&#xff0c;自八十年代初期把它的家庭电脑游戏机&#xff08;FC&#xff09;投放市场后&#xff0c;不平静的世界被再一次激起轩然大波。这个小小的日本…

x86 CPU的保护模式——概述(一)

文章目录 前言一、寄存器变化二、寻址变化三、为什么段寄存器依然是16位&#xff1f; 查看系列文章点这里&#xff1a; 操作系统真象还原 前言 我们在前面已经介绍过实模式了&#xff0c;它是32位 CPU 的一种工作模式&#xff0c;模拟了16位 CPU 的工作环境&#xff0c;但是大多…

java医院信息系统HIS源码SaaS模式Java版云HIS系统 接口技术RESTful API + WebSocket + WebService

java医院信息系统HIS源码SaaS模式Java版云HIS系统 接口技术RESTful API WebSocket WebService 云HIS是基于云计算的医疗卫生信息系统&#xff08;Cloud-Based Healthcare Information System&#xff09;&#xff0c;它运用云计算、大数据、物联网等新兴信息技术&#xff0c;…

centos7.9安装es7.12.0

下载es 国内镜像&#xff1a;https://mirrors.huaweicloud.com/elasticsearch/7.12.0/ 下载并上传内容到/usr/local目录下 解压&#xff1a; tar -zxvf /uar/local/elasticsearch-7.12.0-linux-x86_64.tar.gz安装 es一般不能用root启动&#xff0c;因此需要创建es:es用户和…

Mac SourceTree配置ssh git仓库

一、准备条件 1、Mac系统电脑 2、安装好SourceTree 3、获取ssh git仓库地址 二、配置步骤 1、打开终端命令行 ssh -t rsa -C "xxx""xxx"代表注册git仓库时&#xff0c;使用的用户名&#xff0c;可以是字符串也可以是邮箱地址。 如果遇到输入密码&#xf…

通过 Apple Vision Pro 释放创造力:深入研究空间计算

Apple 最新进军空间计算领域的 Apple Vision Pro,标志着重新定义我们与技术交互方式的重大飞跃。空间计算超越了传统界限,允许用户以无缝集成到物理世界的方式参与 2D 和 3D 内容。 我们可以关注两种类型的体验: 在空间中渲染 2D 内容。这涉及将现有设备窗口投影到空间领域…

某能源集团电力公司搭建数据报表中心,实现采集填报分析一体化

​在当今这个信息爆炸的时代&#xff0c;数据已成为企业最宝贵的财富&#xff0c;越来越多的企业开始重视数据的积累和归集。在企业日常生产和工作过程中&#xff0c;会产生绵延不断的数据&#xff0c;但这些数据往往没有统一的记录、归纳和整理&#xff0c;或者录入了系统却分…

广汽原车控制系统CAN协议控制汽车基本信息获取及数据应用

在现代汽车工业的迅速发展中&#xff0c;车辆控制系统的智能化和网络化已成为提升汽车性能的关键。广汽作为中国汽车行业的佼佼者&#xff0c;其在原车通信网络方面也取得了显著的成就。特别是广汽原车CAN&#xff08;Controller Area Network&#xff09;协议的应用&#xff0…

AC/DC电源模块在工业自动化领域的应用探析

BOSHIDA AC/DC电源模块在工业自动化领域的应用探析 AC/DC电源模块是一种将交流电转换为直流电的电力转换设备&#xff0c;在工业自动化领域具有广泛的应用。本文将从稳定性、效率和可靠性三个方面对AC/DC电源模块在工业自动化领域的应用进行探析。 首先&#xff0c;AC/DC电源模…

【SQL】SQL常见面试题总结(1)

目录 1、检索数据1.1、从 Customers 表中检索所有的 ID1.2、检索并列出已订购产品的清单1.2、检索所有列 2、排序检索数据2.1、检索顾客名称并且排序2.2、对顾客 ID 和日期排序2.3、按照数量和价格排序2.4、检查 SQL 语句 3、过滤数据3.1、返回固定价格的产品3.2、返回产品并且…

React 第三十七章 Scheduler 最小堆算法

在 Scheduler 中&#xff0c;使用最小堆的数据结构在对任务进行排序。 // 两个任务队列 var taskQueue: Array<Task> []; var timerQueue: Array<Task> [];push(timerQueue, newTask); // 像数组中推入一个任务 pop(timerQueue); // 从数组中弹出一个任务 time…

【漏洞复现】用友 NC portal-registerServlet JNDI注入漏洞

0x01 产品简介 用友NC是用友网络科技股份有限公司开发的一款大型企业数字化平台。它主要用于企业的财务核算、成本管理、资金管理、固定资产管理、应收应付管理等方面的工作,致力于帮助企业建立科学的财务管理体系,提高财务核算的准确性和效率。 0x02 漏洞概述 用友NC存在…

Elasticsearch 在滴滴的应用与实践

滴滴 Elasticsearch 简介 简介 Elasticsearch 是一个基于 Lucene 构建的开源、分布式、RESTful 接口的全文搜索引擎&#xff0c;其每个字段均可被索引&#xff0c;且能够横向扩展至数以百计的服务器存储以及处理 TB 级的数据&#xff0c;其可以在极短的时间内存储、搜索和分析大…

登录接口取到token,加到请求头中,通过服务器验证#Vue3

登录接口取到token&#xff0c;加到请求头中&#xff0c;通过服务器验证#Vue3 Token验证的基本流程 1.服务端收到请求&#xff0c;去验证用户名与密码 2.验证成功后&#xff0c;服务端会签发一个 Token&#xff0c;再把这个 Token 发送给客户端 3.客户端收到 Token 以后可以把它…

Linux文件系统详解

&#x1f30e;Linux文件系统 文章目录&#xff1a; Linux文件系统 简单认识磁盘 文件系统       磁盘线性结构抽象       文件系统存储方法 inode Table         inode Bitmap         Data Block         Block Bitmap         …

【漏洞复现】方正全媒体采编系统密码泄露漏洞

0x01 产品简介 方正全媒体新闻采编系统是一个面向媒体深度融合的技术平台&#xff0c;它以大数据和AI技术为支撑&#xff0c;集成了指挥中心、采集中心、编辑中心、发布中心、绩效考核中心、资料中心等多个功能&#xff0c;全面承载“策采编审发存传评”的融媒体业务流程。 0…

爱吃香蕉的珂珂

题目链接 爱吃香蕉的珂珂 题目描述 注意点 piles.length < h < 10^9如果某堆香蕉少于k根&#xff0c;将吃掉这堆的所有香蕉&#xff0c;然后这一小时内不会再吃更多的香蕉返回可以在 h 小时内吃掉所有香蕉的最小速度 k&#xff08;k 为整数&#xff09; 解答思路 二…

Find My资讯|苹果 iOS 17.5 率先执行跨平台反跟踪器标准

苹果和谷歌公司于 2023 年 5 月宣布推出“检测预期外位置追踪器”&#xff08;Detecting Unwanted Location Trackers&#xff09;行业标准&#xff0c;经过 1 年多的打磨之后&#xff0c;该标准目前已通过 iOS 17.5 部署到 iPhone 上。谷歌也将为运行 Android 6.0 或更高版本的…

【从零开始学架构 架构基础】二 架构设计的复杂度来源:高性能复杂度来源

架构设计的复杂度来源其实就是架构设计要解决的问题&#xff0c;主要有如下几个&#xff1a;高性能、高可用、可扩展、低成本、安全、规模。复杂度的关键&#xff0c;就是新旧技术之间不是完全的替代关系&#xff0c;有交叉&#xff0c;有各自的特点&#xff0c;所以才需要具体…

FestDfs快速安装和数据迁移同步。Ubuntu环境

一&#xff1a;防火墙 ufw status 二&#xff1a;下载 分别是&#xff08;环境依赖&#xff0c;网络模块依赖&#xff0c;安装包&#xff09; git clone https://github.com/happyfish100/libfastcommon.git git clone https://github.com/happyfish100/libserverframe.git …