机器学习笔记之优化算法(九)收敛速度的简单认识

机器学习笔记之优化算法——收敛速度的简单认识

引言

本节对收敛速度简单介绍。

收敛速度的判别标准

我们之前几节介绍了线搜索方法 ( Line Search Method ) (\text{Line Search Method}) (Line Search Method),并从方向角度、步长角度描述了先搜索方法的迭代优化过程。关于针对目标函数 f ( X ) f(\mathcal X) f(X)优化的终极目标: min ⁡ X ∈ R n f ( X ) \mathop{\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) XRnminf(X),我们希望通过一系列数值解 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0,使其对应的目标函数结果 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0收敛到最优值 f ∗ f^* f
也可以等价写作: { x k } k = 0 ∞ ⇒ x ∗ ; f ( x ∗ ) = f ∗ \{x_k\}_{k=0}^{\infty} \Rightarrow x^*;f(x^*) = f^* {xk}k=0x;f(x)=f。其中 x ∗ x^* x则表示迭代产生的最优数值解: x ∗ = arg ⁡ min ⁡ X ∈ R n f ( X ) x^* = \mathop{\arg\min}\limits_{\mathcal X \in \mathbb R^n} f(\mathcal X) x=XRnargminf(X)
{ f ( x k ) } k = 0 ∞ ⇒ f ∗ \{f(x_k)\}_{k=0}^{\infty} \Rightarrow f^* {f(xk)}k=0f

本节将介绍两种关于收敛速度的判别标准 Q \mathcal Q Q-收敛速度 R \mathcal R R-收敛速度

Q \mathcal Q Q-收敛速度

其中 Q \mathcal Q Q-收敛速度中的 Q \mathcal Q Q是指: Quotient \text{Quotient} Quotient,也就是除法中的。该方式主要围绕迭代过程中数值解 x k , x k + 1 x_k,x_{k+1} xk,xk+1最优解 x ∗ x^* x之间差异性的商值对收敛速度进行描述:

  • 由于 x k , x k + 1 , x ∗ x_k,x_{k+1},x^* xk,xk+1,x可能是 ∈ R n \in \mathbb R^n Rn的向量,因此关于差异性的描述使用范数进行表示。
  • 而这个范数也可以理解为:数值解最优解之间的距离,是一个正值。
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} klim∣∣xkx∣∣∣∣xk+1x∣∣

在判断是否为 Q \mathcal Q Q-收敛时,我们事先假定

  • k k k充分大——这意味着 x k , x k + 1 x_k,x_{k+1} xk,xk+1都经过充分迭代产生的数值解,因而它们均无限趋近于 x ∗ x^* x。也就是说:无论 ∣ ∣ x k + 1 − x ∗ ∣ ∣ ||x_{k+1} - x^*|| ∣∣xk+1x∣∣还是 ∣ ∣ x k − x ∗ ∣ ∣ ||x_{k} - x^*|| ∣∣xkx∣∣,它们都可视作无穷小量
    { lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ = 0 lim ⁡ k ⇒ ∞ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \begin{cases} \mathop{\lim}\limits_{k \Rightarrow \infty} ||x_{k+1} - x^*|| = 0 \\ \mathop{\lim}\limits_{k \Rightarrow \infty} ||x_{k} - x^*|| = 0 \\ \end{cases} klim∣∣xk+1x∣∣=0klim∣∣xkx∣∣=0
  • x k x_k xk f ( x k ) f(x_k) f(xk)同理——这个意思并不是 x k x_k xk f ( x k ) f(x_k) f(xk)可以进行相互替换,而是说在 Q \mathcal Q Q-收敛中, f ( x k ) f(x_k) f(xk)与· x k x_k xk一样存在相同形式的定义
    这两个定义在 Q \mathcal Q Q-收敛中没有区别,针对具体情况都可以进行使用。
    lim ⁡ k ⇒ ∞ ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{|| f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} klim∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣

我们根据收敛速度的强度由低到高介绍 4 4 4 Q \mathcal Q Q-收敛:

  • Q \mathcal Q Q-次线性收敛 ( Q-SubLinear Convergence ) (\text{Q-SubLinear Convergence}) (Q-SubLinear Convergence),其定义用数学符号表示为:
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 1 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 1 klim∣∣xkx∣∣∣∣xk+1x∣∣=1

  • Q \mathcal Q Q-线性收敛 ( Q-Linear Convergence ) (\text{Q-Linear Convergence}) (Q-Linear Convergence)。对应数学符号表示为:
    ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ ≤ a ∈ ( 0 , 1 ) \frac{||x_{k+1} - x^*||}{||x_k - x^*||} \leq a \in (0,1) ∣∣xkx∣∣∣∣xk+1x∣∣a(0,1)
    我们发现,与 Q \mathcal Q Q-次线性收敛不同的是,它并没有加极限符号。并且:差异性的比值被 ( 0 , 1 ) (0,1) (0,1)范围内的常数 a a a限制着。例如:目标函数值集合 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0服从函数 G ( k ) = 2 − k \mathcal G(k) = 2^{-k} G(k)=2k。其定义域内对应的函数图像表示如下:
    Q-线性收敛示例
    可以发现:随着 k ⇒ ∞ k \Rightarrow \infty k,可以得到最优解 f ∗ = 0 f^* = 0 f=0,而对应的 ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ \begin{aligned}\frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||}\end{aligned} ∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣在图像中可表示为相邻红色直线之间的比值。这个比值的计算结果为:
    ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ = 2 − ( k + 1 ) − 0 2 − k − 0 = 1 2 \frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} = \frac{2^{-(k+1)} - 0}{2^{-k} - 0} = \frac{1}{2} ∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣=2k02(k+1)0=21
    因此,由 G ( k ) \mathcal G(k) G(k)表示的 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0 a = 1 2 \begin{aligned}a = \frac{1}{2}\end{aligned} a=21 Q \mathcal Q Q-线性收敛
    此处所谓线性是指:将 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0视作为误差序列。也就是说:随着迭代次数 k k k的增加,误差信息 G ( k ) \mathcal G(k) G(k)越来越小,最终减少到 0 0 0。对误差取对数操作后,其结果 log ⁡ G ( k ) \log \mathcal G(k) logG(k) k k k之间呈线性关系
    这里关于 log ⁡ \log log取底数为 2 2 2
    log ⁡ G ( k ) = log ⁡ 2 2 − k = − k \log \mathcal G(k) = \log_2 2^{-k} =-k logG(k)=log22k=k
    a a a取到极限 1 1 1时, Q \mathcal Q Q-线性收敛会退化至 Q \mathcal Q Q-次线性收敛;相反,当 a a a取到极限 0 0 0时, Q \mathcal Q Q-线性收敛会进化至 Q \mathcal Q Q-超线性收敛。反过来说:

    • 为什么被称作 Q \mathcal Q Q-次线性收敛是因为:相比 Q \mathcal Q Q-线性收敛中相邻迭代产生的差异性比值能够明显地用 a ∈ ( 0 , 1 ) a \in (0,1) a(0,1)描述出来;而 Q \mathcal Q Q-次线性收敛中相邻迭代产生的差异性几乎完全相同,它们之间的差距可以忽略不计。从而才有:
      很明显,相比 Q \mathcal Q Q-次线性收敛, Q \mathcal Q Q-线性收敛的差异性更明显,收敛的速度更快。
      lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 1 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 1 klim∣∣xkx∣∣∣∣xk+1x∣∣=1
      例如: G ( k ) = 1 k \begin{aligned}\mathcal G(k) = \frac{1}{k}\end{aligned} G(k)=k1就是一个明显的 Q \mathcal Q Q-次线性收敛。其对应函数图像表示如下:
      很明显,相比上述的 G ( k ) = 2 − k \mathcal G(k)=2^{-k} G(k)=2k,随着迭代次数 k k k的增加,相邻红色线比值的变化并不非常明显。
      Q次线性收敛示例
      其次通过计算比值也能观察到类似的效果:
      很明显,当充分迭代之后,此时 k k k已经充分大,而 k k + 1 \begin{aligned}\frac{k}{k+1}\end{aligned} k+1k这样的收敛效果完全可以忽略不计。
      lim ⁡ k ⇒ ∞ ∣ ∣ f ( x k + 1 ) − f ∗ ∣ ∣ ∣ ∣ f ( x k ) − f ∗ ∣ ∣ = lim ⁡ k ⇒ ∞ 1 k + 1 − 0 1 k − 0 = lim ⁡ k ⇒ ∞ k k + 1 = 1 \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{||f(x_{k+1}) - f^*||}{||f(x_k) - f^*||} = \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{\frac{1}{k+1} - 0}{\frac{1}{k} - 0} = \mathop{\lim}\limits_{k \Rightarrow \infty}\frac{k}{k+1} = 1 klim∣∣f(xk)f∣∣∣∣f(xk+1)f∣∣=klimk10k+110=klimk+1k=1
  • Q \mathcal Q Q-次线性收敛相反, Q \mathcal Q Q-超线性收敛 ( Q-Superlinear Convergence ) (\text{Q-Superlinear Convergence}) (Q-Superlinear Convergence)的定义用数学符号表示为:
    这意味着相邻迭代次数之间差异性极大,使得 x k + 1 x_{k+1} xk+1对应的差异性结果与 x k x_k xk的差异性结果相比小到可以忽略不计,这里不再过多赘述。
    lim ⁡ k ⇒ ∞ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ = 0 \mathop{\lim}\limits_{k \Rightarrow \infty} \frac{||x_{k+1} - x^*||}{||x_k - x^*||} = 0 klim∣∣xkx∣∣∣∣xk+1x∣∣=0

  • Q \mathcal Q Q-二次收敛 ( Q-Quadratic Convergence ) (\text{Q-Quadratic Convergence}) (Q-Quadratic Convergence)的定义用数学符号表示为:

    • 同理,如 Q \mathcal Q Q-三次收敛 ( Cubic Convergence ) (\text{Cubic Convergence}) (Cubic Convergence)等等,仅与分母中的指数项相关。
    • 相比于线性收敛中 a ∈ ( 0 , 1 ) a \in (0, 1) a(0,1),我们在 Q \mathcal Q Q-二次收敛中不会更多计较 a a a的范围,因为无穷小量的级别就可以说明其收敛速度。
      ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ 2 ≤ a ∈ ( 0 , + ∞ ) \frac{||x_{k+1} - x^*||}{||x_k - x^*||^2} \leq a \in (0,+\infty) ∣∣xkx2∣∣xk+1x∣∣a(0,+)

    Q \mathcal Q Q-线性收敛的定义类似,也同样没有极限符号。由于 ∣ ∣ x k − x ∗ ∣ ∣ ||x_k - x^*|| ∣∣xkx∣∣自身就是一个无穷小量,那么它的平方结果可理解为一个更高级别的无穷小量,反过来说明:如果 x k + 1 x_{k+1} xk+1差异性所描述的无穷小量与 x k x_k xk差异性的平方所描述的无穷小量是一个级别的话,那么它的收敛速度已经超越了线性范畴

    例如: G ( k ) = 2 − 2 k \mathcal G(k) = 2^{-2^{k}} G(k)=22k就是明显的 Q \mathcal Q Q-二次收敛。其对应的函数图像表示如下:
    很明显,相比上面的收敛,它的收敛速度更快了,这里不再过多赘述。
    Q二次收敛示例
    对应比值的计算结果是:
    G ( k + 1 ) − 0 [ G ( k ) ] 2 = 2 − 2 k + 1 [ 2 − 2 k ] 2 = 1 ∈ ( 0 , + ∞ ) \begin{aligned}\frac{\mathcal G(k+1) -0}{[\mathcal G(k)]^2} = \frac{2^{-2^{k+1}}}{[2^{-2^k}]^2} = 1 \in (0, +\infty)\end{aligned} [G(k)]2G(k+1)0=[22k]222k+1=1(0,+)

R \mathcal R R-收敛速度

其中 R \mathcal R R-收敛速度中的 R \mathcal R R是指: Root \text{Root} Root。关于假设条件与 Q \mathcal Q Q-收敛速度相同,这里不再赘述:

  • k k k充分大;
  • x k x_k xk f ( x k ) f(x_k) f(xk)共用相同概念

关于 R \mathcal R R-收敛速度定义的数学符号表示如下:
∣ ∣ x k − x ∗ ∣ ∣ ≤ t k ||x_k - x^*|| \leq t_k ∣∣xkx∣∣tk
其中 ∣ ∣ x k − x ∗ ∣ ∣ ||x_k - x^*|| ∣∣xkx∣∣依然是数值解与最优解之间的差异性信息(距离范数);该结果被另外一个序列 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0限制住

  • 如果 t k t_k tk Q \mathcal Q Q-次线性/线性/超线性/二次收敛
  • 并且 lim ⁡ k ⇒ ∞ t k = 0 \mathop{\lim}\limits_{k \Rightarrow \infty} t_k = 0 klimtk=0
    这说明 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0是一个 误差序列而不是数值解序列。上面的函数例子中,我们使用这些函数描述的是数值解序列 { x k } k = 0 ∞ \{x_k\}_{k=0}^{\infty} {xk}k=0或者 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0,但这里示例函数 G ( k ) \mathcal G(k) G(k)最终都会收敛到 0 0 0,因而也可以将其视作误差序列

则称 x k x_k xk R \mathcal R R-次线性/线性/超线性/二次收敛
可以看出: Q \mathcal Q Q R \mathcal R R的区别在于:

  • 关于差异性的描述: Q ⇒ ∣ ∣ x k + 1 − x ∗ ∣ ∣ ∣ ∣ x k − x ∗ ∣ ∣ p ( p = 1 , 2 , 3 , ⋯   ) \begin{aligned}\mathcal Q \Rightarrow \frac{||x_{k+1} - x^*||}{||x_k - x^*||^p}(p=1,2,3,\cdots)\end{aligned} Q∣∣xkxp∣∣xk+1x∣∣(p=1,2,3,) R ⇒ ∣ ∣ x k − x ∗ ∣ ∣ \mathcal R \Rightarrow ||x_k - x^*|| R∣∣xkx∣∣
  • 相比于 Q \mathcal Q Q中使用具体值(0、1)或者范围 ( 0 , 1 ) ; ( 0 , + ∞ ) (0,1);(0,+\infty) (0,1);(0,+) R \mathcal R R则使用误差序列 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0,并且每一个迭代步骤 k = 0 , 1 , 2 , ⋯ k=0,1,2,\cdots k=0,1,2,均被对应 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0中的 t 0 , t 1 , t 2 , ⋯ t_0,t_1,t_2,\cdots t0,t1,t2,限制住。

之所以会定义 R \mathcal R R-收敛速度,原因在于:一些情况下, Q \mathcal Q Q-收敛速度不容易求解,如果找到一组合适的 { t k } k = 0 ∞ \{t_k\}_{k=0}^{\infty} {tk}k=0,可以根据 t k t_k tk的收敛速度,从而对 x k x_k xk的收敛速度进行表达。例如:
∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ G ( k ) = 1 k ||f(x_k) - f^*|| \leq \mathcal G(k) = \frac{1}{k} ∣∣f(xk)f∣∣G(k)=k1
我们已经知道:满足 G ( k ) \mathcal G(k) G(k)误差序列 Q \mathcal Q Q-次线性收敛,因而可以判断 { f ( x k ) } k = 0 ∞ \{f(x_k)\}_{k=0}^{\infty} {f(xk)}k=0 R − \mathcal R- R次线性收敛

关于算法复杂度与收敛速度

在真实情况下,我们不能任由算法无限迭代下去,即 k k k不能无限大。因而我们会设置一些判断条件。例如:
这里 ϵ \epsilon ϵ表示描述限制条件的超参数。达到该条件,即可停止算法。
∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ ϵ ||f(x_k) - f^*|| \leq \epsilon ∣∣f(xk)f∣∣ϵ

  • 如果依然以 Q \mathcal Q Q-次线性收敛 1 k \begin{aligned}\frac{1}{k}\end{aligned} k1为例,需要满足:
    ∣ ∣ f ( x k ) − f ∗ ∣ ∣ ≤ G ( k ) = 1 k ≤ ϵ ⇒ k ≥ 1 ϵ ||f(x_k) - f^*|| \leq \mathcal G(k) =\frac{1}{k} \leq \epsilon \Rightarrow k \geq \frac{1}{\epsilon} ∣∣f(xk)f∣∣G(k)=k1ϵkϵ1
    可以看出: ϵ \epsilon ϵ越小时,迭代的次数 k k k越大
  • 如果以 Q \mathcal Q Q-线性收敛 2 − k 2^{-k} 2k为例,需要满足:
    2 − k ≤ ϵ ⇒ k ≥ log ⁡ 2 1 ϵ 2^{-k} \leq \epsilon \Rightarrow k \geq \log_2 \frac{1}{\epsilon} 2kϵklog2ϵ1

可以观察到: ϵ \epsilon ϵ很小的情况下,关于 1 ϵ \begin{aligned}\frac{1}{\epsilon}\end{aligned} ϵ1其量级远高于 log ⁡ 2 1 ϵ \begin{aligned}\log_2 \frac{1}{\epsilon}\end{aligned} log2ϵ1
随着 1 ϵ \begin{aligned}\frac{1}{\epsilon}\end{aligned} ϵ1的增加, Q \mathcal Q Q-次线性收敛(蓝色直线) Q \mathcal Q Q-线性收敛(橙色曲线)对应的函数结果相比,其对应函数值的增速明显更高,而更高意味着更多的迭代步骤

算法复杂度与收敛速度示例
因此,一般情况下,使用更高强度的收敛速度,那么他的迭代步骤就会减小,从而降低算法复杂度。

相关参考:
【优化算法】收敛速度简介
优化里的Q-linear Convergence和R-linear convergence是什么意思?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/63036.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从小白到数据库达人!Mysql优化让你的社招面试无往不利!

大家好,我是小米,在这个美好的时刻又迎来了我们的技术小窝。今天,我们要聊一聊一个在数据库领域中无比重要的话题 —— Mysql 优化!是不是感觉很兴奋呢?废话不多说,让我们直接进入今天的主题。 背景知识 …

输入框长度在XSS测试中如何绕过字符长度限制

大家好,这是我编写的第一篇文章,之所以会分享这个故事,是因为我花了几个晚上的时间,终于找到了解决某个问题的方法。故事如下: 几个月前,我被邀请参加一个非公共的漏洞悬赏项目,在初期发现了一些…

动态规划(二)

一、线性DP 1.1数字三角形 #include<iostream> #include<algorithm>using namespace std;const int N 510,INF 1e9;int n; int a[N][N]; int f[N][N];int main() {scanf("%d",&n);for(int i 1;i < n;i ){for(int j 1;j < i; j )scanf(&qu…

大数据之Hadoop(一)

目录 一、准备三台服务器 二、虚拟机间配置免密登录 三、安装JDK 四、关闭防火墙 五、关闭安全模块SELinux 六、修改时区和自动时间同步 一、准备三台服务器 我们先准备三台服务器&#xff0c;可以通过虚拟机的方式创建&#xff0c;也可以选择云服务器。 关于如何创建虚…

神经网络的搭建与各层分析

为什么去西藏的人都会感觉很治愈 拉萨的老中医是这么说的 缺氧脑子短路&#xff0c;很多事想不起来&#xff0c;就会感觉很幸福 一、卷积层 解释&#xff1a;卷积层通过卷积操作对输入数据进行处理。它使用一组可学习的滤波器&#xff08;也称为卷积核或特征检测器&#xff09…

Java on Azure Tooling 6月更新|标准消费和专用计划及本地存储账户(Azurite)支持

作者&#xff1a;Jialuo Gan - Program Manager, Developer Division at Microsoft 排版&#xff1a;Alan Wang 大家好&#xff0c;欢迎阅读 Java on Azure 工具的六月更新。在本次更新中&#xff0c;我们将介绍 Azure Spring Apps 标准消费和专用计划支持以及本地存储账户&…

AI 绘画Stable Diffusion 研究(四)sd文生图功能详解(上)

大家好&#xff0c;我是风雨无阻。 通过前面几篇AI 绘画Stable Diffusion 研究系列的介绍&#xff0c;我们完成了Stable Diffusion整合包的安装、模型ControlNet1.1 安装、模型种类介绍与安装&#xff0c;相信看过教程的朋友们&#xff0c;手上已经有可以操作实践的Stable Diff…

如何把非1024的采样数放入aac编码器

一. aac对数据规格要求 二、代码实现 1.初始化 2.填入数据 3.取数据 三.图解 一. aac对放入的采样数要求 我们知道aac每次接受的字节数是固定的&#xff0c;在之前的文章里有介绍libfdk_aac音频采样数和编码字节数注意 它支持的采样数和编码字节数分别是&#xff1a; fdk_aac …

马斯克收购AI.com域名巩固xAI公司地位;如何评估大型语言模型的性能

&#x1f989; AI新闻 &#x1f680; AI拍照小程序妙鸭相机上线商业工作站并邀请摄影师进行内测 摘要&#xff1a;AI拍照小程序妙鸭相机将上线面向商业端的工作站&#xff0c;并邀请摄影师进行模板设计的内测。妙鸭相机希望为行业提供更多生态产品&#xff0c;扩大行业规模&a…

JavaScript的对象+内置对象(Math+Date日期+数组+字符串)

一.创建对象 对象是由属性和方法组成的 创建对象的三种方法: 1.利用字面量创建对象 var obj{uname : 张三疯 ,age : 18 ,sex : 男 ,sayHi : function(){console.log(hi~);}} 里面的属性或者方法采用键值对的形式多个属性或者方法用逗号隔开方法冒号后面跟的是一个匿名…

大数据Flink(五十六):Standalone伪分布环境(开发测试)

文章目录 Standalone伪分布环境(开发测试) 一、架构图 二、环境准备 三、下载安装包</

分布式任务调度平台——XXL-JOB

1、为什么需要任务调度平台 1.1、传统的定时任务实现方案不足 在Java中&#xff0c;传统的定时任务实现方案&#xff0c;比如Timer&#xff0c;Quartz等都或多或少存在一些问题&#xff1a; 不支持集群、不支持统计、没有管理平台、没有失败报警、没有监控等。在现在分布式的…

约数个数和欧拉函数

1.约数个数 一个数等于它的质因子的c次方相乘&#xff0c;那么约数个数为所有的次数分别1再相乘。 2. 大概时间复杂度 1-n中&#xff0c;所有数的约数个数之和 3.int范围内约数最t多的数大概1600个左右 一个数的约数大概 根号n 的复杂度

图像处理库(Opencv, Matplotlib, PIL)以及三者之间的转换

文章目录 1. Opencv2. Matplotlib3. PIL4. 三者的区别和相互转换5. Torchvision 中的相关转换库5.1 ToPILImage([mode])5.2 ToTensor5.3 PILToTensor 1. Opencv opencv的基本图像类型可以和numpy数组相互转化&#xff0c;因此可以直接调用torch.from_numpy(img) 将图像转换成t…

第三章 图论 No.6负环之01分数规划与特殊建图方式

文章目录 裸题&#xff1a;904. 虫洞01分数规划&#xff1a;361. 观光奶牛特殊建图与01分数规划trick&#xff1a;1165. 单词环 裸题&#xff1a;904. 虫洞 904. 虫洞 - AcWing题库 // 虫洞是负权且单向边&#xff0c;道路是正权且双向边&#xff0c;题目较裸&#xff0c;判…

【SpringBoot学习笔记】02. yaml配置注入

yaml配置注入 yaml基础语法 说明&#xff1a;语法要求严格&#xff01; 1、空格不能省略 2、以缩进来控制层级关系&#xff0c;只要是左边对齐的一列数据都是同一个层级的。 3、属性和值的大小写都是十分敏感的。 yaml注入配置文件 1、在springboot项目中的resources目录…

32位M0核单片机XL32F003芯片特征和功能介绍

XL32F003 系列微控制器采用高性能的 32 位 ARMCortex- M0 内核&#xff0c;宽电压工作范围的MCU。嵌入高达64 Kbytes flash和8 Kbytes SRAM存储器&#xff0c;最高工作频率32 MHz。包含多种不同封装类型多款产品。芯片集成多路I2C、SPI、 USART等通讯外设&#xff0c;1路12 bit…

一招让你的Python爬虫事半功倍

在Python爬虫的世界里&#xff0c;你是否也被网站的IP封锁问题困扰过&#xff1f;别担心&#xff0c;我来教你一个简单而又有效的爬虫ip设置方法&#xff0c;让你的爬虫畅行无阻&#xff01;快来跟我学&#xff0c;让你的Python爬虫事半功倍&#xff0c;轻松搞定IP封锁问题&…

【高频面试题】微服务篇

文章目录 Spring Cloud1.Spring Cloud 5大组件有哪些&#xff1f;2.服务注册和发现是什么意思&#xff1f;Spring Cloud 如何实现服务注册发现&#xff1f;3.负载均衡如何实现的 ?4.什么是服务雪崩&#xff0c;怎么解决这个问题&#xff1f;5.微服务是怎么监控的 业务相关6.项…

【ASP.NET MVC】使用动软(三)(11)

一、问题 上文中提到&#xff0c;动软提供了数据库的基本操作功能&#xff0c;但是往往需要添加新的功能来解决实际问题&#xff0c;比如GetModel&#xff0c;通过id去查对象&#xff1a; 这个功能就需要进行改进&#xff1a;往往程序中获取的是实体的其他属性&#xff0c;比如…