基于卷积神经网络CNN,使用二维卷积Conv2D实现MNIST数字识别的四种方法

手写

前言

系列专栏:机器学习:高级应用与实践【项目实战100+】【2024】✨︎
在本专栏中不仅包含一些适合初学者的最新机器学习项目,每个项目都处理一组不同的问题,包括监督和无监督学习、分类、回归和聚类,而且涉及创建深度学习模型、处理非结构化数据以及指导复杂的模型,如卷积神经网络、门控循环单元、大型语言模型和强化学习模型

使用 MNIST 数据集进行手写数字识别是一个借助神经网络完成的重要项目。深度神经网络是机器学习和人工智能的一个分支,这种网络能够从提供的无组织或无标记数据中进行无监督学习。

我们在此基础上更进一步,我们的手写数字识别系统不仅能检测手写数字的扫描图像,还能借助集成的图形用户界面在屏幕上书写数字进行识别。它主要检测手写数字的扫描图像。

目录

  • 1. 相关库和数据集
    • 1.1 相关库介绍
    • 1.2 数据集介绍
  • 2. 数据预处理
    • 2.1 特征缩放
    • 2.2 数据重塑
    • 2.3 格式变换
  • 3. 模型建立
    • 3.1 数据准备
    • 3.2 构建模型(4 种不同的模型结构)
      • 3.2.1 密集神经网络
      • 3.2.2 二维卷积网络(密集+最大池化)
      • 3.2.3 二维卷积网络(密集+最大池化+Dropout)
      • 3.2.4 二维卷积网络(密集+最大池化+Dropout+BN算法)
  • 4. 模型评估
    • 4.1 预测性能
    • 4.2 比較結果
    • 4.3 结果可视化

1. 相关库和数据集

1.1 相关库介绍

Python 库使我们能够非常轻松地处理数据并使用一行代码执行典型和复杂的任务。

  • Numpy – 是一种开源的数值计算扩展,可用来存储和处理大型矩阵,缩短大型计算的时间。
  • Matplotlib – 此库用于绘制可视化效果,用于展现数据之间的相互关系。
  • TensorFlow™ – 是一个基于数据流编程的符号数学系统,被广泛应用于各类机器学习算法的编程实现。
  • Keras – 是一个由Python编写的开源人工神经网络库,可以作为Tensorflow的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化。
import numpy as np
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
import tensorflow as tf

from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import mnist
from keras.utils import to_categorical

1.2 数据集介绍

MNIST 数据集是一组由中学生和美国人口普查局雇员手写的 70,000 个小图,由高中生和美国人口普查局的员工手写而成。每个图像都标有所代表的数字,人们对该数据集进行了大量研究,因此它经常被称为机器学习的 “Hello World”。

(x_train, y_train), (x_test, y_test) = mnist.load_data()
print("Training Shape:", x_train.shape, y_train.shape)
print("----------------------------------------")
print("Testing Shape:", x_test.shape, y_test.shape)
Training Shape: (60000, 28, 28) (60000,)
----------------------------------------
Testing Shape: (10000, 28, 28) (10000,)

2. 数据预处理

2.1 特征缩放

①将像素值(0-255)归一化为(0-1),以便更好地进行训练

# Normalize pixel values (0-255) to (0-1) --> 0 for better training
x_train = x_train.astype('float32') / 255.0
x_test = x_test.astype('float32') / 255.0

print("Min: %.3f, Max: %.3f" % (x_train.min(), x_train.max()))
print("Min: %.3f, Max: %.3f" % (x_test.min(), x_test.max()))
Min: 0.000, Max: 1.000
Min: 0.000, Max: 1.000

2.2 数据重塑

②重塑数据以便输入神经网络

# Reshape the data for input to the neural network (28x28 pixels)
x_train = x_train.reshape((x_train.shape[0], 28, 28, 1))
x_test = x_test.reshape((x_test.shape[0], 28, 28, 1))

print("Training Shape:", x_train.shape)
print("----------------------------")
print("Testing Shape:", x_test.shape)
Training Shape: (60000, 28, 28, 1)
----------------------------
Testing Shape: (10000, 28, 28, 1)

2.3 格式变换

③将标签从整数格式转换为 one-hot 编码向量

y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)

print(y_train[0])
print(y_test[0])
[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 0. 0. 1. 0. 0.]

3. 模型建立

3.1 数据准备

①将数据拆分为训练数据、验证数据和测试数据

x_train, x_val, y_train, y_val = train_test_split(x_train, y_train, test_size=0.20, random_state=1)
print("Training Shape:", x_train.shape, y_train.shape)
print("------------------------------------------")
print("validation Shape:", x_val.shape, y_val.shape)
Training Shape: (48000, 28, 28, 1) (48000, 10)
------------------------------------------
validation Shape: (12000, 28, 28, 1) (12000, 10)

3.2 构建模型(4 种不同的模型结构)

3.2.1 密集神经网络

# 使用Sequential模型,并通过Input层指定输入形状
model_1 = keras.Sequential([
    layers.Input(shape=(28, 28, 1)),  # 这里的Input层定义了模型的输入形状
    layers.Flatten(),
    layers.Dense(512, activation='relu'),
    layers.Dense(256, activation='relu'),
    layers.Dense(10, activation='softmax')
])
# compile the model
model_1.compile(
    optimizer= 'adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

模型概要

model_1.summary()
Model: "sequential"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ flatten (Flatten)(None, 784)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense (Dense)(None, 512)401,920 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_1 (Dense)(None, 256)131,328 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_2 (Dense)(None, 10)2,570 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 535,818 (2.04 MB)
 Trainable params: 535,818 (2.04 MB)
 Non-trainable params: 0 (0.00 B)

模型训练

model_1.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=10, batch_size=32)
Epoch 1/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 6s 4ms/step - accuracy: 0.8948 - loss: 0.3426 - val_accuracy: 0.9642 - val_loss: 0.1150
Epoch 2/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9745 - loss: 0.0825 - val_accuracy: 0.9719 - val_loss: 0.0933
Epoch 3/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.9829 - loss: 0.0534 - val_accuracy: 0.9727 - val_loss: 0.0980
Epoch 4/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9865 - loss: 0.0380 - val_accuracy: 0.9709 - val_loss: 0.1073
Epoch 5/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9892 - loss: 0.0302 - val_accuracy: 0.9778 - val_loss: 0.0905
Epoch 6/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9927 - loss: 0.0225 - val_accuracy: 0.9760 - val_loss: 0.1015
Epoch 7/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9936 - loss: 0.0186 - val_accuracy: 0.9775 - val_loss: 0.0990
Epoch 8/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 5s 3ms/step - accuracy: 0.9933 - loss: 0.0196 - val_accuracy: 0.9778 - val_loss: 0.1068
Epoch 9/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9939 - loss: 0.0182 - val_accuracy: 0.9772 - val_loss: 0.1158
Epoch 10/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 3ms/step - accuracy: 0.9938 - loss: 0.0182 - val_accuracy: 0.9770 - val_loss: 0.1083

模型评估

test_loss_1, test_accuracy_1 = model_1.evaluate(x_test, y_test)

print("\nAccuracy =", test_accuracy_1, "\n-----------------------------", "\nLoss =", test_loss_1)
313/313 ━━━━━━━━━━━━━━━━━━━━ 2s 5ms/step - accuracy: 0.9749 - loss: 0.1182

Accuracy = 0.978600025177002 
----------------------------- 
Loss = 0.09816069155931473

3.2.2 二维卷积网络(密集+最大池化)

model_2 = keras.Sequential([
    layers.Input(shape=(28, 28, 1)),
    layers.Conv2D(32, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dense(10, activation='softmax')
])
# compile the model
model_2.compile(
    optimizer= 'Adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

模型概要

model_2.summary()
Model: "sequential_1"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d (Conv2D)(None, 26, 26, 32)320 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d (MaxPooling2D)(None, 13, 13, 32)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_1 (Conv2D)(None, 11, 11, 64)18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_1 (MaxPooling2D)(None, 5, 5, 64)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_1 (Flatten)(None, 1600)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_3 (Dense)(None, 128)204,928 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_4 (Dense)(None, 10)1,290 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 225,034 (879.04 KB)
 Trainable params: 225,034 (879.04 KB)
 Non-trainable params: 0 (0.00 B)

模型训练

model_2.fit(x_train, y_train, batch_size=32, validation_data=(x_val, y_val), epochs=10)
Epoch 1/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9023 - loss: 0.3260 - val_accuracy: 0.9793 - val_loss: 0.0674
Epoch 2/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9849 - loss: 0.0485 - val_accuracy: 0.9789 - val_loss: 0.0650
Epoch 3/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9909 - loss: 0.0299 - val_accuracy: 0.9829 - val_loss: 0.0585
Epoch 4/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9933 - loss: 0.0195 - val_accuracy: 0.9861 - val_loss: 0.0483
Epoch 5/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9937 - loss: 0.0173 - val_accuracy: 0.9868 - val_loss: 0.0493
Epoch 6/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9964 - loss: 0.0112 - val_accuracy: 0.9873 - val_loss: 0.0515
Epoch 7/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9963 - loss: 0.0101 - val_accuracy: 0.9865 - val_loss: 0.0533
Epoch 8/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9963 - loss: 0.0098 - val_accuracy: 0.9867 - val_loss: 0.0603
Epoch 9/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9979 - loss: 0.0058 - val_accuracy: 0.9880 - val_loss: 0.0528
Epoch 10/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 7s 4ms/step - accuracy: 0.9983 - loss: 0.0052 - val_accuracy: 0.9884 - val_loss: 0.0608

模型评估

test_loss_2, test_accuracy_2 = model_2.evaluate(x_test, y_test)

print("\nAccuracy =", test_accuracy_2, "\n-----------------------------", "\nLoss =", test_loss_2)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9851 - loss: 0.0610

Accuracy = 0.9889000058174133 
----------------------------- 
Loss = 0.046354446560144424

3.2.3 二维卷积网络(密集+最大池化+Dropout)

model_3 = keras.Sequential([
    layers.Input(shape=(28, 28, 1)),
    layers.Conv2D(32, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64, (3,3), activation='relu'),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(128, (3,3), activation='relu'),
    layers.Flatten(),
    layers.Dropout(0.5),
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.5),
    layers.Dense(10, activation='softmax')
])
model_3.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

模型概要

model_3.summary()
Model: "sequential_2"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d_2 (Conv2D)(None, 26, 26, 32)320 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_2 (MaxPooling2D)(None, 13, 13, 32)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_3 (Conv2D)(None, 11, 11, 64)18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_3 (MaxPooling2D)(None, 5, 5, 64)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_4 (Conv2D)(None, 3, 3, 128)73,856 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_2 (Flatten)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout (Dropout)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_5 (Dense)(None, 128)147,584 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_1 (Dropout)(None, 128)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_6 (Dense)(None, 10)1,290 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 241,546 (943.54 KB)
 Trainable params: 241,546 (943.54 KB)
 Non-trainable params: 0 (0.00 B)

模型训练

model_3.fit(x_train, y_train, batch_size=32, validation_data=(x_val, y_val), epochs=10)
Epoch 1/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 9s 5ms/step - accuracy: 0.8248 - loss: 0.5350 - val_accuracy: 0.9796 - val_loss: 0.0631
Epoch 2/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9706 - loss: 0.0949 - val_accuracy: 0.9853 - val_loss: 0.0475
Epoch 3/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9805 - loss: 0.0652 - val_accuracy: 0.9874 - val_loss: 0.0422
Epoch 4/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9840 - loss: 0.0566 - val_accuracy: 0.9894 - val_loss: 0.0381
Epoch 5/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 10s 5ms/step - accuracy: 0.9867 - loss: 0.0456 - val_accuracy: 0.9895 - val_loss: 0.0380
Epoch 6/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9879 - loss: 0.0389 - val_accuracy: 0.9900 - val_loss: 0.0338
Epoch 7/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9888 - loss: 0.0378 - val_accuracy: 0.9896 - val_loss: 0.0367
Epoch 8/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9906 - loss: 0.0332 - val_accuracy: 0.9872 - val_loss: 0.0484
Epoch 9/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9901 - loss: 0.0338 - val_accuracy: 0.9917 - val_loss: 0.0319
Epoch 10/10
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 8s 5ms/step - accuracy: 0.9913 - loss: 0.0263 - val_accuracy: 0.9911 - val_loss: 0.0346

模型评估

test_loss_3, test_accuracy_3 = model_3.evaluate(x_test, y_test)

print("\nAccuracy =", test_accuracy_3, "\n-----------------------------", "\nLoss =", test_loss_3)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9883 - loss: 0.0389

Accuracy = 0.991100013256073 
----------------------------- 
Loss = 0.030680162832140923

3.2.4 二维卷积网络(密集+最大池化+Dropout+BN算法)

model_4 = keras.Sequential([
    layers.Input(shape=(28, 28, 1)),
    layers.Conv2D(32, (3,3), activation='relu'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(64, (3,3), activation='relu'),
    layers.BatchNormalization(),
    layers.MaxPooling2D((2,2)),
    layers.Conv2D(128, (3,3), activation='relu'),
    layers.Flatten(),
    layers.Dropout(0.2),             # using 20% dropout instead of 50%
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.2),
    layers.Dense(10, activation='softmax'),
])
model_4.compile(
    optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy']
)

模型概要

model_4.summary()
Model: "sequential_3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━┓
┃ Layer (type)                         ┃ Output Shape                ┃         Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━┩
│ conv2d_5 (Conv2D)(None, 26, 26, 32)320 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ batch_normalization                  │ (None, 26, 26, 32)128 │
│ (BatchNormalization)                 │                             │                 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_4 (MaxPooling2D)(None, 13, 13, 32)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_6 (Conv2D)(None, 11, 11, 64)18,496 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ batch_normalization_1                │ (None, 11, 11, 64)256 │
│ (BatchNormalization)                 │                             │                 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ max_pooling2d_5 (MaxPooling2D)(None, 5, 5, 64)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ conv2d_7 (Conv2D)(None, 3, 3, 128)73,856 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ flatten_3 (Flatten)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_2 (Dropout)(None, 1152)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_7 (Dense)(None, 128)147,584 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dropout_3 (Dropout)(None, 128)0 │
├──────────────────────────────────────┼─────────────────────────────┼─────────────────┤
│ dense_8 (Dense)(None, 10)1,290 │
└──────────────────────────────────────┴─────────────────────────────┴─────────────────┘
 Total params: 241,930 (945.04 KB)
 Trainable params: 241,738 (944.29 KB)
 Non-trainable params: 192 (768.00 B)

模型训练

model_4.fit(x_train, y_train, batch_size=64, validation_data=(x_val, y_val), epochs=6)
Epoch 1/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 12s 14ms/step - accuracy: 0.9043 - loss: 0.3018 - val_accuracy: 0.9855 - val_loss: 0.0485
Epoch 2/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9841 - loss: 0.0517 - val_accuracy: 0.9862 - val_loss: 0.0458
Epoch 3/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9882 - loss: 0.0379 - val_accuracy: 0.9881 - val_loss: 0.0442
Epoch 4/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9906 - loss: 0.0286 - val_accuracy: 0.9873 - val_loss: 0.0452
Epoch 5/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9923 - loss: 0.0252 - val_accuracy: 0.9845 - val_loss: 0.0545
Epoch 6/6
750/750 ━━━━━━━━━━━━━━━━━━━━ 10s 13ms/step - accuracy: 0.9923 - loss: 0.0236 - val_accuracy: 0.9871 - val_loss: 0.0486

模型评估

test_loss_4, test_accuracy_4 = model_4.evaluate(x_test, y_test)

print("\nAccuracy =", test_accuracy_4, "\n-----------------------------", "\nLoss =", test_loss_4)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9856 - loss: 0.0679

Accuracy = 0.9901000261306763 
----------------------------- 
Loss = 0.04728936031460762

4. 模型评估

4.1 预测性能

①构建模型性能预测函数

def predict(model, image):

    reshaped_image = image.reshape((1, 28, 28, 1))
    prediction = model.predict(reshaped_image)
    predicted_class = np.argmax(prediction)

    return predicted_class
predict_image_class = predict(model_1, x_test[0])
print("Predicted Class Label: ", predict_image_class)
print("Actual Class Label of the same image:",(np.argmax(y_test[0])))
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 38ms/step
Predicted Class Label:  7
Actual Class Label of the same image: 7

4.2 比較結果

def compare_models(models, x_test, y_test):
    accuracies = []
    model_names = []

    for model in models:
        _, accuracy = model.evaluate(x_test, y_test)
        accuracies.append(accuracy)

    best_model_index = np.argmax(accuracies)
    best_model = models[best_model_index]
    best_accuracy = accuracies[best_model_index]
    model_names = [f"Model {i+1}" for i in range(len(models))]

    plt.plot(model_names, accuracies, marker='o')
    plt.xlabel('Models')
    plt.ylabel('Accuracy')
    plt.title('Comparison of Model Accuracies')
    plt.xticks(rotation=45)
    plt.show()


    print("Comparison Results:")
    for i in range(len(models)):
        print(f"Model {i+1} - Accuracy: { accuracies[i]:.4f}")

    print(f"Best Model : Model {best_model_index+1}")
    print(f"Best Accuracy: {best_accuracy:.4f}")

    return best_model
models = [model_1, model_2, model_3, model_4]
best_model = compare_models(models, x_test, y_test)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9749 - loss: 0.1182
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9851 - loss: 0.0610
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9883 - loss: 0.0389
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.9856 - loss: 0.0679

4.3 结果可视化

评估结果可视化

Comparison Results:
Model 1 - Accuracy: 0.9786
Model 2 - Accuracy: 0.9889
Model 3 - Accuracy: 0.9911
Model 4 - Accuracy: 0.9901
Best Model : Model 3
Best Accuracy: 0.9911

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/629498.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何找到MySQL中存储引擎所对应的表空间并且打开?

在上节课我们学习了数据库(MySQL)进阶:存储引擎,有不少同学产生疑惑,到底要怎么找到表空间并且打开啊?这节课我们就来探讨。 首先,根据这个路径:C:\ProgramData\MySQL\MySQL Server…

又双叒叕新增2本SCI期刊“On Hold“,慎投,有剔除风险!

本周投稿推荐 SSCI • 2区社科经管类,3.0-4.0(录用友好) EI • 计算机工程生物医学等(领域广,录用极快) CNKI • 3天内初审录用,随即出版(急录友好) SCI&EI …

C++容器:list(双向链表)

一丶list介绍 C中的list容器底层确实是以双向链表的形式实现的。 list容器是C标准模板库(STL)中的一部分,它提供了对列表数据结构的实现。 双向链表结构:list容器的每个元素都是通过指针链接在一起的,每个元素都包含…

英语学习笔记14——What color‘s your ... ?

What color’s your … ? 你的 …… 是什么颜色的? 词汇 Vocabulary case n. 箱子【封闭的】 相关:box n. 箱子【开口的】    bookcase n. 书架 补充:case n. 案件,案例 口语:It’s a small case.    小意思&…

电脑常用的PDF阅读器-嗨动PDF编辑器!带你详细了解它

电脑常用的PDF阅读器-嗨动PDF编辑器!在数字化信息爆炸的时代,PDF格式的文件因其易于打印和保留原始格式等优点,成为了人们日常工作和学习的常用格式。而对于PDF文件的处理,一款功能强大、操作简便的PDF阅读器是必不可少的。今天&a…

APP封装后防止破解的全方位策略

移动应用开发完成后,封装(编译打包)是发布前的重要步骤。然而,一旦APP发布,就可能面临被逆向工程破解的风险,从而导致源代码泄露、数据被盗取等严重后果。 本文将介绍一系列实用的策略和技术,帮…

GM812条码模块的技术参数

扫码性能参数 *测试条件:环境温度23℃;环境照度300 LUX; **测试条件:测试距离(最小景深最大景深)/2; 环境温度23℃;环境照度300 LUX; *规格如有更改,恕不另…

处理Mini-ImageNet数据集,用于分类任务

一、Mini-ImageNet数据集介绍 ImageNet 1000类的数据太大了,全部下载大概有100GB左右。 2016年google DeepMind团队从ImagNet数据集中抽取的一小部分(大小约3GB)制作了Mini-ImageNet数据集,共有100个类别,每个类别有…

vscode对一些软件的调试插件。

vscode对一些软件的调试插件。 1、ae ,f1然后选择运行 after effect 脚本 2、maya,右键send code to maya 3、max,ctrle运行脚本到max 4、unity 从在Visual Studio代码使用.NET的核心: 1、安装.NET Core SDK,链接: https://dotn…

Unity 模拟放大镜局部放大UI 效果实现

UI 放大实现 RectTransformUtility.ScreenPointToLocalPointInRectangle(rectScale, eventData.position, eventData.pressEventCamera, out localPos); 使用IPointerDownHandler 获取鼠标点击时的有效负载,并将鼠标坐标转成对应的UI 坐标,rectScale 为…

(1)双指针算法介绍与练习:移动零

目录 双指针算法介绍 练习:移动零 双指针算法介绍 双指针算法常见于数组和双向链表的题型 在数组中,双指针中的指针代表数组元素的下标,而不是真正的指针类型变量 在双向链表中,双指针中的指针即为真正意义上的指针&#xff…

前馈神经网络FNN、多层感知机MLP和反向传播推导

目录 一、前馈神经网络FNN 激活函数的使用 二、多层感知机MLP MLP的典型结构 多层感知机MLP的特点 和前馈神经网络FNN的区别 三、传播推导 1、前向传播(Forward propagation) (1)输入层到隐藏层 (2)隐藏层到输出层 2、…

webpack生成模块关系依赖图示例:查看构建产物的组成部分 依赖关系图

npm i -D webpack-bundle-analyzer core-js babel-loaderwebpack.config.js const BundleAnalyzerPlugin require(webpack-bundle-analyzer).BundleAnalyzerPlugin; module.exports {entry: ./src/index.js,output: {filename: main.js,},// mode: production, // 或者 produ…

【数据结构】堆(超详细)

文章目录 前言堆的概念及结构堆的实现堆的向下调整算法(建小堆为例)堆的向上调整算法(建小堆为例)堆的初始化销毁堆堆的插入堆的删除(规定删堆顶的数据)取堆顶元素判断堆是否为空获取堆的个数 完整代码(包括测试代码&a…

k8s 二进制安装 详细安装步骤

目录 一 实验环境 二 操作系统初始化配置(所有机器) 1,关闭防火墙 2,关闭selinux 3,关闭swap 4, 根据规划设置主机名 5, 做域名映射 6,调整内核参数 7, 时间同步 三 部署 dock…

微软exchange邮箱发送

使用java发送exchange类型的邮件&#xff0c;foxmail中配置如下图&#xff1a; 需要的maven依赖如下&#xff1a; <dependency><groupId>com.microsoft.ews-java-api</groupId><artifactId>ews-java-api</artifactId><version>2.0</ve…

1. 杜克大学官方宣布2027届新生画像什么是vue关键特点核心概念简单示例生态系统

目录 1. 杜克大学官方宣布2027届新生画像 什么是vue 关键特点 核心概念 简单示例 生态系统 1. 杜克大学官方宣布2027届新生画像 杜克大学校报《The Chronicle》已连续第七年对杜克大学的一年级新生进行深入调查&#xff0c;探讨该群体家庭受教育背景、家庭收入水平以及…

异步I/O库-libuv介绍

1.简介 libuv是一个跨平台的支持事件驱动的异步I/O的库&#xff0c;使开发者可以以非阻塞的方式执行文件I/O操作、网络通信、子进程管理等。 libuv的主要特点包括&#xff1a; 事件循环&#xff1a;libuv有一个基于事件循环的模型&#xff0c;它不断地轮询事件&#xff0c;并…

洗地机怎么挑?洗地机选购指南,2024洗地机测评选购攻略

在快节奏的生活中&#xff0c;繁琐的清洁工作往往令人头疼&#xff0c;随着洗地机的诞生&#xff0c;极大地简化了清洁的过程&#xff0c;洗地机凭借着它吸拖洗为一体的高效清洁特点&#xff0c;受到家庭和商业场所的广泛欢迎。那么&#xff0c;洗地机怎么挑&#xff0c;要注意…

速度背!24上软考网工“经典100道母题来了”!

距离软考考试的时间越来越近了&#xff0c;趁着这两周赶紧准备起来。 今天给大家整理了——网络工程师经典100道母题&#xff08;含解析&#xff09;&#xff0c;有PDF版&#xff0c;可打印&#xff0c;每天刷一点&#xff0c;考试就像遇到“老朋友”。 第一章节&#xff1a;计…