五分钟“手撕”时间复杂度与空间复杂度

 

目录

一、算法效率

什么是算法

如何衡量一个算法的好坏

算法效率

二、时间复杂度

时间复杂度的概念

大O的渐进表示法

推导大O阶方法

常见时间复杂度计算举例  

三、空间复杂度

常见时间复杂度计算举例


一、算法效率

什么是算法

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说:算法就是一系列的计算步骤,用来将输入数据转化成输出结果

如何衡量一个算法的好坏

下面求斐波那契数列的算法好还是不好,为什么?该如何衡量一个算法的好坏呢? 

public static long Fib(int N){
if(N < 3){
    return 1;
}
    return Fib(N-1) + Fib(N-2);
}

算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率

时间效率被称为时间复杂度,而空间效率被称作空间复杂度

时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间。

在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。 

二、时间复杂度

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个数学函数它定量描述了该算法的运行时间。

那我们就在想:那程序运行,记为时间开始,程序结束,记为时间结束,两者相减不就好了嘛?

这样想是不对的。因为每台电脑的性能都是不一样的,处理程序的时间也会不一样,就比如:老的电脑可能慢一点,新电脑可能快一点

时间复杂度的概念

 所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。 

大O的渐进表示法

我们通过一段代码学习大O的渐进表示法: 

// 请计算一下func1基本操作执行了多少次?
void func1(int N){
    int count = 0;
//下面这个for循环执行了N^2次
for (int i = 0; i < N ; i++) {
    for (int j = 0; j < N ; j++) {
    count++;
    }
}
//下面这个for循环执行了2*N次
for (int k = 0; k < 2 * N ; k++) {
    count++;
}
    int M = 10;
//下面这个while循环执行了10次
while ((M--) > 0) {
    count++;
}
    System.out.println(count);
}

分析思路:

第一个for循环,它是双重循环,外圈从0开始,循环到N;内圈也从0开始,循环到N。所以循环了N*N=N^2次执行次数。

第二个for循环,他只有一层循环,按顺序的循环,从0开始,循环了2*N次执行次数

第三个for循环,他M是10,M--到0结束,执行了10次执行次数。        

Func1 执行的基本操作次数 :

F(N)=N^2+2*N+10 

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010 

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数而只需要大概执行次数,那么这里我们使用大O的渐进表示法。 

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法

1、用常数1取代运行时间中的所有加法常数。

2、在修改后的运行次数函数中,只保留最高阶项。

3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。 

所以对于上面那个代码,我们算出执行次数的函数表达式为:F(N)=N^2+2*N+10;

对于方法1:F(N)=N^2+2*N+1;

对于方法2:F(N)=N^2+1;

对于方法3:F(N)=N^2+1;

而1对于这个函数来说,可以忽略不记,所以最后时间复杂度就为:O(N^2)

另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x。最好情况:1次找到,最坏情况:N次找到

平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N) 

常见时间复杂度计算举例  

【实例1】 

// 计算func2的时间复杂度?
void func2(int N) {
    int count = 0;
for (int k = 0; k < 2 * N ; k++) {
    count++;
}
    int M = 10;
while ((M--) > 0) {
    count++;
}
    System.out.println(count);
}

所以对于上面那个代码,我们算出执行次数的函数表达式为:F(N)=2*N+10;

对于方法1:F(N)=2*N+1;

对于方法2:F(N)=2*N+1;

对于方法3:F(N)=N;

所以最后时间复杂度就为:O(N);

【实例2】

// 计算func3的时间复杂度?
void func3(int N, int M) {
    int count = 0;
for (int k = 0; k < M; k++) {
    count++;
}
for (int k = 0; k < N ; k++) {
    count++;
}
    System.out.println(count);
}

所以对于上面那个代码,我们算出执行次数的函数表达式为:F(N)=M+N;

对于方法1:F(N)=M+N;

对于方法2:F(N)=M+N;

对于方法3:F(N)=M+N;

所以最后时间复杂度就为:O(M+N);

【实例3】

// 计算func4的时间复杂度?
void func4(int N) {
    int count = 0;
for (int k = 0; k < 100; k++) {
    count++;
}
    System.out.println(count);
}

所以对于上面那个代码,我们算出执行次数的函数表达式为:F(N)=100;

对于方法1:F(N)=1;

对于方法2:F(N)=1;

对于方法3:F(N)=1;

所以最后时间复杂度就为:O(1);

【实例4】

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
    boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
    Swap(array, i - 1, i);
    sorted = false;
}
}
if (sorted == true) {
    break;
}
}
}

注意!这时候可能会陷入个误区: 两层循环不就是array.length^(array.length-1)吗?

但是你要想清楚,假设end=3,(注意看代码,end每次循环都会变化,下面的循环也会变化)

第一次:end=3,i=1;i++;i=2;(i<end:3)

第二次:end=2,i=1;(i<end:2)

循环结束。

所以:执行次数为n-1.....n-2......n-3......1这是个等差数列求和(Sn=n(a1+an)/2);

所以F(N)=(N*(N-1))/2 = (N^2-N)/2

所以对于上面那个代码,我们算出执行次数的函数表达式为:F(N)=(N^2-N)/2

对于方法1:F(N)=(N^2-N)/2;

对于方法2:F(N)=(N^2)/2;

对于方法3:F(N)=N^2;

所以最后时间复杂度就为:O(N^2);

【实例5】

/ 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
    int begin = 0;
    int end = array.length - 1;
while (begin <= end) {
    int mid = begin + ((end-begin) / 2);
if (array[mid] < value)
    begin = mid + 1;
else if (array[mid] > value)
    end = mid - 1;
else
    return mid;
}
    return -1;
}

 上面程序是二分查找,但是对于时间复杂度的求法有两点:

1.看代码

2.看思想

显然,直接看代码行不通,并不能很容易推断出他的执行次数的函数。所以我们看下图:

【实例6】

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
    return N < 2 ? N : factorial(N-1) * N;
}

 递归的时间复杂度:递归的次数*每次递归后  代码执行的次数。

注意:只要不是循环等等,普通的代码语句都是O(1);

上述代码也是需要看思想的,这个是递归代码,我们可以试试先带个简单的值,

比如:FIb(3):

Fib(3)执行一次--》Fib (2) 执行一次--》FIb(1)执行一次。

所以是O(N)

【实例7】

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
    return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

递归的时间复杂度:递归的次数*每次递归后  代码执行的次数。

我们可以试试先把Fib(4)带入,得下图:

2^0+2^1+2^2+2^3+......+2^(N-1)   这是一个等比数列

等比数列公式为:Sn=a1 (1-q^n)/ (1-q)

则算出数据为:O(2^N)

 

 

那又会有一个想法:右下角那部分不是空缺了吗?我们不是在完整的状况下求的空间复杂度吗?

答:空间复杂度我们一般都是求最坏的结果,所以即使多了一部分也无妨,反正求的是最坏的结果。 

三、空间复杂度

空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空 间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法。 

常见时间复杂度计算举例

 【实例1】

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
    boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
    Swap(array, i - 1, i);
    sorted = false;
}
}
if (sorted == true) {
    break;
}
}
}

我们的变量只有:end,sorted,i 这三个额外的空间。

可能会有个想法:为什么int[ ] array不算呢?

答:作为参数、条件传入函数的都不算时间复杂度,因为不是临时占用的空间也不是额外占用的空间。

即使是经历了N次循环,但是要知道的是:空间是可以重复利用的。

比如:i被int出来,会进入局部域在这个栈帧里面创建一个,出了作用域(也就是括号)栈帧销毁,空间释放。下次再int的的i也是同一个空间,所以i只创建了一个变量。

只计算变量个数,不管变量类型,也不算空间具体的字节数。

所以上述代码空间复杂度为:O(3)

又根据大O渐进阶方法中:方法3:O(3)=O(1)

 【实例2】

// 计算fibonacci的空间复杂度?
    int[] fibonacci(int n) {
    long[] fibArray = new long[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
    fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
    return fibArray;
}

上述代码创建了 N+1 个大小的数组

而1可以直接省略,数值太小了忽略不计

所以空间复杂度为:O(N)

 【实例3】

// 计算阶乘递归Factorial的空间复杂度?
long factorial(int N) {
    return N < 2 ? N : factorial(N-1)*N;
}

假设:我们N为3,Fib(3)--》Fib(2)--》Fib(1)一共三次

我们函数在每次执行时,都会在栈上开辟一份临时的空间

所以空间复杂度为:O(N)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/627089.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

蓝桥杯单片机之模块代码《串口发数据》

过往历程 历程1&#xff1a;秒表 历程2&#xff1a;按键显示时钟 历程3&#xff1a;列矩阵按键显示时钟 历程4&#xff1a;行矩阵按键显示时钟 历程5&#xff1a;新DS1302 历程6&#xff1a;小数点精确后两位ds18b20 历程7&#xff1a;35定时器测量频率 历程8&#xff…

队列的讲解

队列的概念 队列:只允许在一端进行插入数据操作&#xff0c;在另一端进行删除数据操作的特殊线性表&#xff0c;队列具有先进先出FIFO(First In First Out) 入队列:进行插入操作的一端称为队尾 出队列:进行删除操作的一端称为队头 一端进另一端出 也就是可以做到&#xff0c;先…

[BJDCTF 2020]easy_md5、[HNCTF 2022 Week1]Interesting_include、[GDOUCTF 2023]泄露的伪装

目录 [BJDCTF 2020]easy_md5 ffifdyop [SWPUCTF 2021 新生赛]crypto8 [HNCTF 2022 Week1]Interesting_include php://filter协议 [GDOUCTF 2023]泄露的伪装 [BJDCTF 2020]easy_md5 尝试输入一个1&#xff0c;发现输入的内容会通过get传递但是没有其他回显 观察一下响应…

数据结构与算法-排序算法3-插入排序

目录 1.插入排序&#xff1a; 1.介绍&#xff1a; 2.动态图解 3.举例 4.小结插入排序规则 5.插入排序代码 6.运行时间 代码&#xff1a; 运行结果&#xff1a; 1.插入排序&#xff1a; 1.介绍&#xff1a; 数组中n个元素&#xff0c;把这n个待排序元素看成一个有序序…

深度学习:光流估计新范式

0.概述 在这篇文章中&#xff0c;我们将讨论两种基于深度学习的光流运动估计方法。FlowNet是第一个用于计算光流的CNN方法&#xff0c;RAFT是当前最先进的估计光流的方法。我们还将看到如何使用作者提供的经过训练的模型来使用PyTorch对新数据进行推断。 1. FlowNet FlowNet…

读人工智能时代与人类未来笔记03_演变

1. 演变 1.1. 每个社会都找到了属于自己的一套适应世界的方法 1.1.1. 适应的核心&#xff0c;是有关人类心智与现实之间关系的概念 1.1.2. 人类认识周围环境的能力 1.1.2.1. 这种能力通过知识获得&#xff0c;同时也受到知识…

CentOS 安装 SeaweedFS

1. SeaweedFS 介绍 SeaweedFS 是一个简单且高度可扩展的分布式文件系统。有两个目标&#xff1a; to store billions of files! (存储数十亿个文件&#xff01;)to serve the files fast! (快速提供文件&#xff01;) Seaweedfs的中心节点&#xff08;center master&#xff09…

电容笔记汇总

电容 一、电容理论基础 1、电容的本质 两个相互靠近的导体&#xff0c;中间夹一层不导电的绝缘介质&#xff0c;这就构成了电容器。当电容器的两个极板之间加上电压时&#xff0c;电容器就会储存电荷。 两个相互靠近的金属板中间夹一层绝缘介质组成的器件&#xff0c;当两端…

JeeSite Vue3:前端开发页面如何动态设置菜单展示模式?

推荐阅读&#xff1a; JeeSite Vue3&#xff1a;前端开发的未来之路(更新版) 随着技术的飞速发展&#xff0c;前端开发技术日新月异。在这个背景下&#xff0c;JeeSite Vue3 作为一个基于 Vue3、Vite、Ant-Design-Vue、TypeScript 和 Vue Vben Admin 的前端框架&#xff0c;引…

研发管理之认识DevOps

文章目录 一、什么是DevOps二、DevOps的背景和起源三、DevOps的特点和价值1、特点&#xff1a;2、价值&#xff1a; 四、DevOps如何帮助提高软件交付速度和质量 一、什么是DevOps DevOps&#xff08;Development和Operations的组合词&#xff09;是一组过程、方法与系统的统称…

Sketch总结

sketch禁用了lineGap https://www.sketch.com/docs/designing/text/ http://www.sketchcn.com/sketch-chinese-user-manual.html https://github.com/sketch-hq/sketch-document https://developer.sketch.com/file-format/ https://animaapp.github.io/sketch-web-viewer/ htt…

Python | Leetcode Python题解之第89题格雷编码

题目&#xff1a; 题解&#xff1a; class Solution:def grayCode(self, n: int) -> List[int]:ans [0] * (1 << n)for i in range(1 << n):ans[i] (i >> 1) ^ ireturn ans

C++基础与深度解析 | 表达式 | 操作符

文章目录 一、表达式基础1.表达式的值类别2.表达式的类型转换 二、表达式详述1.算术操作符2.逻辑与关系操作符3.位操作符4.赋值操作符5.自增与自减运算符6.其他操作符三、C17对表达式的求值顺序的限定 一、表达式基础 表达式由一到多个操作数组成&#xff0c;可以求值并 ( 通常…

2024年5月面试准备

2024年5月面试准备 资料来源Java基础泛型注解异常反射SPI机制Java集合CollectionMap 并发基础线程并发关键字并发集合Lock核心类并发集合核心类原子类核心类线程池核心类ScheduledThreadPoolExecutorForkJoinPoolFokJoinTask JUC原子类: CAS, Unsafe和原子类详解JUC 工具类 Jav…

Nginx 生产环境部署的最佳实践

你好呀&#xff0c;我是赵兴晨&#xff0c;文科程序员。 最近一段时间&#xff0c;我一直在和大家一起探讨Nginx的相关话题。期间&#xff0c;我收到了很多小伙伴的私信&#xff0c;他们好奇地问我&#xff1a;在生产环境中&#xff0c;Nginx应该如何配置&#xff1f; 他们在…

LeetCode题练习与总结:不同的二叉搜索树--96

一、题目描述 给你一个整数 n &#xff0c;求恰由 n 个节点组成且节点值从 1 到 n 互不相同的 二叉搜索树 有多少种&#xff1f;返回满足题意的二叉搜索树的种数。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;5示例 2&#xff1a; 输入&#xff1a;n 1 输出&…

平衡三进制小数详解与进制转换

标准三进制是“逢三进一&#xff0c;退一还三”的机制&#xff0c;平衡三进制与之类似&#xff0c;但就是偏移了一下变得对称了&#xff0c;平衡三进制与标准三进制可以相互转换&#xff0c;但这样显得有点多余了&#xff0c;所以这里只讲平衡三进制与十进制的转换。 数字系统的…

_pickle.UnpicklingError: STACK_GLOBAL requires str

导致这个报错的原因是我跑yolo的时候修改数据集了&#xff0c;里面的label.cache没有删除&#xff0c;咱只要删除掉缓存就行&#xff01;&#xff01; 我这里是已经删除掉了&#xff0c;所以图片里面没有&#xff0c;一般就是在箭头所示位置有.cache文件的

Python 全栈体系【四阶】(四十三)

第五章 深度学习 九、图像分割 3. 常用模型 3.4 DeepLab 系列 3.4.1 DeepLab v1(2015) 3.4.1.1 概述 图像分割和图像分类不一样&#xff0c;要对图像每个像素进行精确分类。在使用CNN对图像进行卷积、池化过程中&#xff0c;会导致特征图尺寸大幅度下降、分辨率降低&…

windows驱动开发-PCI和中断(二)

谈到中断使用PCI总线来作为例子是最合适的&#xff0c;在Windows发展过程中&#xff0c;PCI作为最成功的底层总线&#xff0c;集成了大量的外设&#xff0c;不夸张的说&#xff0c;目前PCI几乎是唯一的总线选择&#xff0c;故大部分情况下&#xff0c;只有PCI设备驱动程序会遇到…