JavaScript异步编程——09-Promise类的方法【万字长文,感谢支持】

Promise 类的方法简介

Promise 的 API 分为两种:

  • Promise 实例的方法(也称为:Promis的实例方法)

  • Promise 类的方法(也称为:Promise的静态方法)

前面几篇文章,讲的都是 Promise 实例的方法(需要先将Promise实例化),它们都是存放在Promise的prototype上的。今天这篇文章,我们来讲一下 Promise 的方法。

Promise 的方法:可以直接通过大写的Promise.xxx调用的方法。这里的xxx就称之为静态方法。

Promise 的自带 API 提供了如下静态方法:

Promise 的静态方法含义版本
Promise.resolve()返回一个成功状态的 Promise 对象ES 2015
Promise.reject()返回一个失败状态的 Promise 对象ES 2015
Promsie.all()所有 Promise 都执行成功才算成功;或者任意一个 Promise 执行失败,就算失败ES 2015
Proimse.allSettled()不论成功与失败,把所有Promise的执行结果全部返回ES 2020
Promise.race()Promise集合中,返回第一个执行完成(无论成功与失败)的 PromiseES 2015
Promise.any()Promise集合中,返回第一个执行成功的PromiseES 2021

Promise.resolve() 和 Promise.reject()

使用场景

当我们在定义一个 Promise 的过程中,如果涉及到异步操作,那就需要通过new Promise的方式创建一个 Promise 实例。

但有些场景下,我们已经有一个现成的内容了,希望将其转成 Promise 来使用。此时,我们可以用 Promise.resolve() 将其封装为成功的状态。同理,用Promise.reject()可以封装为失败的状态。

比如说,有时候,promise 里面并没有异步操作,我只是单纯地想通过 promise 的方式返回一个字符串(有的业务就是有这样的需求),那就可以通过 Promise.reslove('字符串')Promise.reject('字符串') 这种简写的方式返回。

代码举例:

 const promise = Promise.resolve('qianguyihao')
 ​
 promise.then(res => {
   console.log('res:', res);
 });
 ​
 // 上方代码如果是连续书写的话,也可以简写成:
 Promise.resolve('qianguyihao').then(res => console.log('res:', res));

Promise.resolve('qianguyihao') 这种写法似乎过于啰嗦,直接 return 'qianguyihao'不行吗?that depands。举个例子,我们在调用别人的方法时,对方如果要求返回值必须是 Promise对象,那么,Promise.resolve() 就能派上用场了。

Promise.resolve()Promise.reject()的返回值就是一个 Promise。

用法拆解

Promise.resolve()的用法相当于new Promise(),并执行resolve()操作。下面这两种写法是等价的:

 // 写法1:Promise 类的 resolve() 方法
 const promise = Promise.resolve(params);
 ​
 // 写法2:Promise 实例的 resolve() 方法
 const promise = new Promise((resolve, reject)=> resolve(params));

Promise.reject()的用法同理。下面这两种写法是等价的:

 // 写法1:Promise 类的 reject() 方法
 const promise = Promise.reject(params);
 ​
 // 写法2:Promise 实例的 reject() 方法
 // 第一个形参用不到,我们通常用 下划线 表示。这是一种约定俗成的规范写法。
 const promise = new Promise((_, reject)=> reject(params));

写法2显然过于啰嗦,写法1用得更多。

写法2中,我们可以学到一个写代码的小技巧:如果某个形参我们用不到,但又必须写出来的话,我们通常用下划线表示。这是一种约定俗成的规范写法,比较简洁。

resolve()和reject()的参数

resolve()参数中传入的值,可以有很多种类型,进而决定 Promise 的状态:

  • 情况1:如果resolve()中传入普通的值或者普通对象,那么这个值会作为then()回调的参数。Promise 的状态为fulfilled。

  • 情况2:如果resolve()中传入的是另外一个新的 Promise,那么原 Promise 的状态将交给新的 Promise 决定

  • 情况3:如果resolve()中传入的是thenable 对象,那就会执行该then()方法,并且根据then()方法的结果来决定Promise的状态

reject()的参数中,无论传入什么值,Promise都会直接进入 rejected 状态,并触发 catch() 方法的执行。

我们在前面的文章《Promise入门详解》中针对这些情况做了详细介绍,在此不再赘述。

代码详解

resolve()、reject()既可以作为 Promise 实例的方法,也可以作为 Promise 类的方法。这两种情况,我们来对比看看。

例 1:

 function foo(flag) {
     if (flag) {
         return new Promise((resolve) => {
             // 这里可以做异步操作
             resolve('success');
         });
 ​
         // return Promise.resolve('success2');
     } else {
         return new Promise((reslove, reject) => {
             // 这里可以做异步操作
             reject('fail');
         });
     }
 }
 ​
 // 执行 reslove 的逻辑
 foo(true).then((res) => {
     console.log(res);
 });
 ​
 // 执行 reject 的逻辑
 foo(false).catch((err) => {
     console.log(err);
 });

例 2:(见证奇迹的时刻)

 function foo(flag) {
     if (flag) {
         // Promise的静态方法:直接返回字符串
         return Promise.resolve('success');
     } else {
         // Promise的静态方法:直接返回字符串
         return Promise.reject('fail');
     }
 }
 ​
 // 执行 reslove 的逻辑
 foo(true).then((res) => {
     console.log(res);
 });
 ​
 // 执行 reject 的逻辑
 foo(false).catch((err) => {
     console.log(err);
 });

例 1 和例 2 的打印结果是一样的。这两段代码的区别在于:例 1 里面可以封装异步任务;例 2 只能单纯的返回一个字符串等变量,不能封装异步任务。

Promise.all()

Promise.all()的参数是一个数组,数组里可以填写多个 Promise;Promise.all()的返回值是一个新的 Promise。这里我们以三个 Promise 为例,比如 Promsie.all([p1, p2, p3])。它的作用是将p1、p2、p3 这三个 Promise 包裹在一起,组成一个新的 Promise

新 Promise 的状态由 p1、p2、p3 这三个 Promse 共同决定

  • 当 p1、p2、p3等所有的 Promise 状态都变为 fulfilled 时,新的 Promise 将变为 fulfilled 状态,并会将 p1、p2、p3 等所有 Promise 的返回值组成一个数组,作为 then() 的参数。

  • 当p1、p2、p3 等 Promise中有一个 Promise 状态为 rejected 时,新的 Promise 将立马变为 rejected 状态,并会将第一个 reject() 的返回值作为 catch() 的参数。

Promsie.all([p, p2, p3])使用场景:并发处理多个异步任务,所有任务都执行成功,才算成功(才会走到 then);只要有一个任务失败,就会马上走到 catch,整体都算失败。参数里传的是多个 Promise 实例组成的数组。

Promsie.all() 在实际开发中使用得非常频繁,真的很好用。我们在开发一个前端页面时,经常需要同时调用多个接口,等待这些接口的数据都准备好之后,前端再来做接下来的事。如果你也遇到这样的需求,那么 Promsie.all() 适合你。

语法举例

1、异步任务都执行成功时

 const promise1 = new Promise((resolve, reject) => {
     setTimeout(() => {
         console.log('执行 promise1');
         resolve('promise 1 成功');
     }, 1000);
 });
 ​
 const promise2 = new Promise((resolve, reject) => {
     setTimeout(() => {
         console.log('执行 promise2');
         resolve('promise 2 成功');
     }, 2000);
 });
 ​
 const promise3 = new Promise((resolve, reject) => {
     setTimeout(() => {
         console.log('执行 promise3');
         resolve('promise 3 成功');
     }, 3000);
 });
 ​
 Promise.all([promise1, promise2, promise3])
     .then((res) => {
         // 三个异步任务都执行成功,才会走到这里
         // 这里拿到的 res,是三个成功的返回结果组成的数组
         console.log('all promise res:' + JSON.stringify(res));
     })
     .catch((err) => {
         // 只要有一个异步任务执行失败,就会马上走到这里
         console.log(err);
     });

打印结果:

 // 1秒后
 执行 promise1
 ​
 // 2秒后
 执行 promise2
 ​
 // 3秒后
 执行 promise3
 ​
 all promise res:["promise 1 成功","promise 2 成功","promise 3 成功"]

2、异步任务有至少一个执行失败时

 const promise1 = new Promise((resolve, reject) => {
     setTimeout(() => {
         console.log('执行 promise1');
         resolve('promise 1 成功');
     }, 1000);
 });
 ​
 const promise2 = new Promise((resolve, reject) => {
     setTimeout(() => {
         console.log('执行 promise2');
         // 这里通过 reject() 的方式,表示任务执行失败
         reject('promise 2 失败');
     }, 2000);
 });
 ​
 const promise3 = new Promise((resolve, reject) => {
     setTimeout(() => {
         console.log('执行 promise3');
         resolve('promise 3 成功');
     }, 3000);
 });
 ​
 Promise.all([promise1, promise2, promise3])
     .then((res) => {
         // 三个异步任务都执行成功,才会走到这里
         console.log('走到 then:' + JSON.stringify(res));
     })
     .catch((err) => {
         // 只要有一个异步任务执行失败,就会马上走到这里
         console.log('走到 catch:' + err);
     });

打印结果:

// 1秒后
执行 promise1

// 2秒后
执行 promise2
走到 catch:promise 2 失败

// 3秒后
执行 promise3

可以看到,当 promise2 执行失败之后,马上就走到了 catch,获取到了 promise2 失败的结果。

要注意的是,promise1、promise3并不会执行 resolve(),它俩状态是 pending,且无法获取它俩的结果。我们只知道整体的任务是失败的,获取了整体的失败结果。

Promise.all()案例:多张图片上传

案例:现在有一个图片上传的接口,每次请求接口时只能上传一张图片。需求是:当用户连续上传完九张图片(正好凑齐九宫格)之后,给用户一个“上传成功”的提示。这个时候,我们就可以使用Promsie.all()

这个例子,在实际的项目开发中,经常遇到,属于高频需求,需要记住并理解。

1、代码举例如下:

const imgArr = ['1.jpg', '2.jpg', '3.jpg', '4.jpg', '5.jpg', '6.jpg', '7.jpg', '8.jpg', '9.jpg'];
const promiseArr = [];
imgArr.forEach((item) => {
    const p = new Promise((resolve, reject) => {
        // 在这里做图片上传的异步任务。图片上传成功后,接口会返回图片的 url 地址
        //  upload img ==> return imgUrl
        if (imgUrl) {
            // 单张图片上传完成
            resolve(imgUrl);
        } else {
            reject('单张图片上传失败');
        }
    });
    promiseArr.push(p);
});
Promise.all(promiseArr)
    .then((res) => {
        console.log('图片全部上传完成');
        console.log('九张图片的url地址,组成的数组:' + res);
    })
    .catch((res) => {
        console.log('部分图片上传失败');
    });

2、上方代码解释:

(1)只有九张图片都上传成功,才会走到 then。

第一张图会成功调 upload 接口,并返回 imgUrl,但不会走到 resolve,因为要等其他八张图的执行结果,再决定是一起走 resolove 还是一起走 reject。

(2)按时间顺序来看,假设第一张图片上传成功,第二张图片上传失败,那么,最终的表现是:

  • 对于前端来说,九张图都会走到 reject;整体会走到 catch,不会走到 then。

  • 对于后端来说,第一张图片会上传成功(因为写入 DB 是不可逆的),第二张图上传失败,剩下的七张图,会正常请求 upload img 接口。

其实九张图的 upload img 请求都已经发出去了。对于后端来说,是没有区别的(而且读写 DB 的操作不可逆),只是在前端的交互表现不同、走到 resolve / reject / then / catch 的时机不同而已。

3、思维拓展

  • 拓展 1:如果你希望九张图同时上传,并且想知道哪些图上传成功、哪些图上传失败,则可以这样做:无论 upload img 接口请求成功与否,全都执行 resolve。这样的话,最终一定会走到 then,然后再根据接口返回的结果判断九张图片的上传成功与否。

  • 拓展 2:实战开发中,在做多张图片上传时,可能是一张一张地单独上传,各自的上传操作相互独立。此时 Promise.all便不再适用,这就得具体需求具体分析了。

注意:某个任务失败之后,其他任务会继续执行

一定要注意,当执行 Promise.all() / Promise.race() / Promise.any() 等方法时,如果其中一个任务失败了,其他任务并没有停止,会继续执行。只是前端拿不到其他任务的执行状态而已。

其他任务是否需要做一些特殊梳理,就要结合你自己的业务逻辑来考虑。

Promse.allSettled()

Promise.all()方法组成的多个Promise中,有个明显的特点是:只要有一个 Promise 元素进入 rejected 状态,则整体的 Promise 会立即进入 rejected 状态。其他 Promise 元素会处于 pending 状态,任务本身是否执行成功,我们在前端代码里无从知晓,因为无法拿到处理结果。我们只知道整体的 Promise 是 fulfilled或者 rejected ,获取整体的成功/失败结果。

如果你认为 Promise.all() 的这一点无法满足你的需求,那么, Promise.allSettled() 可以提供一种新思路。

Promise.allSettled() 是ES11(ES 2020)中提供的新API。它会等待所有的 Promise 元素都有结果(无论是 fulfilled,还是rejected)后,才会有最终的结果(settled),而且状态一定是 fulfilled。

Promise.allSettled() 的状态为 fulfilled,不代表 里面的 Promise 元素都是 fulfilled,这只是在表明,里面的 Promise 元素都已经有了就结果(可能成功、可能失败)。

语法举例

const promise1 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise1');
    resolve('promise 1 成功');
  }, 1000);
});

const promise2 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise2');
    reject('promise 2 失败');
  }, 2000);
});

const promise3 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise3');
    resolve('promise 3 成功');
  }, 3000);
});

Promise.allSettled([promise1, promise2, promise3]).then(res => {
  // 注意看 res 的返回结果
  console.log('allSettled:', res);
});

打印结果:

执行 promise1

执行 promise2

执行 promise3

allSettled:

[
    {
        "status": "fulfilled",
        "value": "promise 1 成功"
    },
    {
        "status": "rejected",
        "reason": "promise 2 失败"
    },
    {
        "status": "fulfilled",
        "value": "promise 3 成功"
    }
]

打印结果截图:

image-20230523193237044

从上面的打印结果可以看出,Promise.allSettled() 的状态为 fulfilled后,then()的回调函数里,res 是一个数组,数组里存放了每个 Promise 元素的执行结果(包括状态和返回值)。

在实际开发中,Promise.all() 比 Promise.allSettled() 用得更多一些。

Promise.race()

Promise.race([p1, p2, p3]):参数里传的是多个 Promise 元素组成的数组。可以并发处理多个Promise,整体的执行状态取第一个执行完成的 Promise的状态,且状态和第一个完成的任务状态保持一致。

上面这句话,第一次读时,可能很绕口。我以异步任务为例,说的再通俗一点:在多个同时执行的异步任务中,等待哪个任务 最先执行完成(无论是走到 resolve,还是走到 reject,都算执行完成),整体的状态就立即跟这个任务保持一致。如果这个任务执行成功,那整体就算成功(走到 then);如果这个任务执行失败,那整体就算失败(走到 catch)。

race的中文翻译,可以理解为“竞赛”、“竞争”。意思是,谁先抢到名额,就认定谁了。谁前有结果,就用谁的结果。无论这个人最终的结局是成功或者失败,整体的结局,都以这个人的结局为准。

我刚开始学 Promise.race()的时候,误以为它的含义是“只要有一个异步执行成功,整体就算成功(走到 then);所有任务都执行失败,整体才算失败(走到 catch)”。现在想来,真是大错特错,过于懵懂。

现在我顿悟了,准确来说,Promise.race()强调的是:只要有一个异步任务执行完成,整体就是完成的。

Promise.race()的应用场景:在众多 Promise 实例中,最终结果只取一个 Promise 的状态,谁返回得最快就用谁的 Promise 状态。

我们来看看各种场景的打印结果,继续前行。

语法举例

场景 1、所有任务都执行成功时

const promise1 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise1');
        resolve('promise 1 成功');
    }, 1000);
});

const promise2 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise2');
        resolve('promise 2 成功');
    }, 2000);
});

const promise3 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise3');
        resolve('promise 3 成功');
    }, 3000);
});

Promise.race([promise1, promise2, promise3])
    .then((res) => {
        // 第一个完成的任务,如果执行成功,就会走到这里
        // 这里拿到的 res,是第一个成功的 promise 返回的结果,不是数组
        console.log(JSON.stringify(res));
				console.log('走到then:' + res);
    })
    .catch((err) => {
        // 第一个完成的任务,如果执行失败,就会走到这里
        console.log(err);
    });

打印结果:

// 1秒后
执行 promise1
走到then:promise 1 成功

// 2秒后
执行 promise2

// 3秒后
执行 promise3

场景 2、第一个任务成功、第二个任务失败时

const promise1 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise1');
        resolve('promise 1 成功');
    }, 1000);
});

const promise2 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise2');
        // 第二个任务执行失败时
        reject('promise 2 失败');
    }, 2000);
});

const promise3 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise3');
        resolve('promise 3 成功');
    }, 3000);
});

Promise.race([promise1, promise2, promise3])
    .then((res) => {
        // 第一个完成的任务,如果执行成功,就会走到这里
        console.log('走到then:' + res);
    })
    .catch((err) => {
        // 第一个完成的任务,如果执行失败,就会走到这里
        console.log('走到catch:' + err);
    });

打印结果:

// 1秒后
执行 promise1
走到then:promise 1 成功

// 2秒后
执行 promise2

// 3秒后
执行 promise3

可以看出,场景 2 的打印结果和场景 1 的打印结果,是一样的。因为第一个执行完成的任务是成功的,所以整体就算成功,马上走到 then()。

场景 3、第一个任务失败、第二个任务成功时

const promise1 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise1');
        // 第一个任务执行失败时
        reject('promise 1 失败');
    }, 1000);
});

const promise2 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise2');
        resolve('promise 2 成功');
    }, 2000);
});

const promise3 = new Promise((resolve, reject) => {
    setTimeout(() => {
        console.log('执行 promise3');
        resolve('promise 3 成功');
    }, 3000);
});

Promise.race([promise1, promise2, promise3])
    .then((res) => {
        // 第一个完成的任务,如果执行成功,就会走到这里
        console.log('走到then:' + res);
    })
    .catch((err) => {
        // 第一个完成的任务,如果执行失败,就会走到这里
        console.log('走到catch:' + err);
    });

打印结果:

// 1秒后
执行 promise1
走到catch:promise 1 失败

// 2秒后
执行 promise2

// 3秒后
执行 promise3

看清楚了没?场景 3 的最终打印结果,是走到了 catch;任务 2 和任务 3 里的 resolve,并没有执行。

场景 3 的代码,一定要好好理解。

Promise.race()举例:图片加载超时

现在有个需求是这样的:前端需要加载并显示一张图片。如果图片在三秒内加载成功,那就显示图片;如果三秒内没有加载成功,那就按异常处理,前端提示“加载超时”或者“请求超时”。

代码实现:

// 图片请求的Promise
function getImg() {
    return new Promise((resolve, reject) => {
        let img = new Image();
        img.onload = function () {
            // 图片的加载,是异步任务
            resolve(img);
        };
        img.src = 'https://img.smyhvae.com/20200102.png';
    });
}

// 加载超时的 Promise
function timeout() {
    return new Promise((resolve, reject) => {
        // 采用 Promise.race()之后,如果 timeout() 的 promise 比 getImg() 的 promise先执行,说明定时器时间到了,那就算超时。整体的最终结果按失败处理。
        setTimeout(() => {
            reject('图片加载超时');
        }, 3000);
    });
}

Promise.race([getImg(), timeout()])
    .then((res) => {
        // 图片加载成功
        console.log(res);
    })
    .catch((err) => {
        // 图片加载超时
        console.log(err);
    });

如代码注释所述:采用 Promise.race() 之后,如果 timeout() 的 Promise 比 getImg() 的 Promise 先执行,说明定时器时间到了,那就算超时。整体的最终结果按失败处理。

这个思路很巧妙。用同样的思路,我们还可以处理网络请求超时的问题。如果接口请求时长超过 3 秒,就按超时处理,也就是下面我们要举的例子。

Promise.race()举例:网络请求超时

现在有这种需求:如果接口请求时长超过 3 秒,就按超时处理。

基于这种需求,我们可以用 Promise.race() 来实现:一个 Promise 用于请求接口,另一个 Promise 用于 setTimeout() 定时器。把这两个 Promise 用 Promise.race() 组装在一起,谁先执行,那么最终的结果就以谁的为准。

代码举例:

function query(url, delay = 4000) {
    let promiseArr = [
        myAajax(url),
        new Promise((resolve, reject) => {
            setTimeout(() => {
                reject('网络请求超时');
            }, delay);
        }),
    ];
    return Promise.race(promiseArr);
}

query('http://localhost:8899/xxx_url', 3000)
    .then((res) => {
        console.log(res);
    })
    .catch((error) => {
        console.log(error);
    });

Promise.any()

Promise.any() 是 ES12(ES 2021)中推出的新API。它类似于 Promise.race(),但有一个关键的区别:Promise.any() 会等待参数中第一个状态为 fulfilled 的Promise元素,然后立即进入 fulfilled状态。

如果参数中所有的 Promise 元素都进入了 rejected,那么也会等到所有的Promise都变成rejected 状态,最终报错 AggregateError。

语法举例

场景1、第一个任务失败,第二个任务成功:

const promise1 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise1');
    reject('promise 1 失败');
  }, 1000);
});

const promise2 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise2');
    resolve('promise 2 成功');
  }, 2000);
});

const promise3 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise3');
    resolve('promise 3 成功');
  }, 3000);
});

Promise.any([promise1, promise2, promise3]).then(res => {
  console.log('走到then:', res);
});

打印结果:

// 1秒后
执行 promise1

// 2秒后
执行 promise2
走到then(): promise 2 成功

// 3秒后
执行 promise3

场景2、三个任务都失败:

const promise1 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise1');
    reject('promise 1 失败');
  }, 1000);
});

const promise2 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise2');
    reject('promise 3 失败');
  }, 2000);
});

const promise3 = new Promise((resolve, reject) => {
  setTimeout(() => {
    console.log('执行 promise3');
    reject('promise 3 失败');
  }, 3000);
});

Promise.any([promise1, promise2, promise3])
  .then(res => {
    console.log('走到then:', res);
  })
  .catch(err => {
    console.log('走到catch:', err);
  });

打印日志:

// 1秒后
执行 promise1

// 2秒后
执行 promise2

// 3秒后
执行 promise3
走到catch: AggregateError: All promises were rejected

注意看打印结果中的报错信息。执行 promise3这行日志出来之后,报错的那行马上就出来了。

兼容性问题

Promise.any() 方法依然是实验性的,尚未被所有的浏览器完全支持。它当前处于 TC39 第四阶段草案(Stage 4)。

总结

Promise 的静态方法简化处理了多个并发操作的代码,使其更加方便、直观地调用。

Promise 不仅能解决嵌套异步任务的回调地域问题,也可管理多个异步任务的并发请求

Promise 本身不是异步的,但是它可以封装异步任务,并对异步操作进行良好的、舒适简洁的状态管理,这便是 Promise 的魅力所在。

赞赏作者

创作不易,你的赞赏和认可,是我更新的最大动力:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/626960.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SpringBoot解决CORS跨域——WebMvcConfigurationSupport

前端请求后端报错了。 状态码:403 返回错误:Invalid coRs request 增加配置类WebMvcConfig Configuration public class WebMvcConfig extends WebMvcConfigurationSupport {Overridepublic void addCorsMappings(CorsRegistry registry) {// 允许跨域…

Python中tkinter编程入门4

在Python中tkinter编程入门3-CSDN博客中创建了Button控件,点击该控件就会产生一个点击事件,在创建Button控件时指定该点击事件的处理程序后,按键控件就会对用户的点击事件产生响应。 1 定义事件处理器 定义事件处理器就是一个自定义的函数。…

2024年小学生古诗文大会备考:吃透历年真题和知识点(持续)

根据往年的安排,2024年小学生古诗文大会预计这个月就将启动。该如何备考2024年小学生古诗文大会呢?根据往期的经验,只要吃透这些真题和背后的知识点,通过上海小学生古诗文大会的初选(初赛)一点问题都没有。…

使用docker创建hadoop集群:Couldn‘t upload the file

运行的环境; Windows10 Docker Desktopdocker-hadoop 出现的问题如下: 解决方法 https://github.com/big-data-europe/docker-hadoop/issues/98

美国站群服务器如何提高企业网站的负载均衡能力?

美国站群服务器如何提高企业网站的负载均衡能力? 美国站群服务器是企业提高网站负载均衡能力的重要工具之一。随着网络流量的增加和用户需求的多样化,如何有效地管理和分配流量成为了企业面临的挑战。通过采用美国站群服务器,企业可以实现流量的智能分…

JETBRAINS IDES 分享一个2099通用试用码!CLion 2024 版 ,支持一键升级

文章目录 废话不多说上教程:(动画教程 图文教程)一、动画教程激活 与 升级(至最新版本) 二、图文教程 (推荐)Stage 1.下载安装 toolbox-app(全家桶管理工具)Stage 2 : 下…

echarts实现金价可视化大屏(项目实战)

前言 最近由于某种原因参加了一个比赛,三天时间肝出来一个可视化大屏项目(无后端),代码已开源,但是还在比赛期间不知道会不会影响到 技术使用:html,css,js,echarts&#…

谷歌Gemini时代来了!加固搜索护城河、赋能全家桶,Gemini 1.5 Pro升级至200万token

3 月中旬,谷歌宣布 Google I/O 定档北京时间 5 月 15 日凌晨 1 点。而当大会开幕时间临近,本应是讨论度最高的时候,「宿敌」OpenAI 却半路杀出,抢先一天,仅耗时 27 分钟就发布了颠覆性巨作 GPT-4o,将新一轮…

生态系统类型分布数据、土地利用数据、植被类型分布、自然保护区分布数据

引言 全国自然保护区生态系统类型分布信息产品是指基于Landsat TM数字影像(以地形图纠正),采用全数字化人机交互遥感快速提取方法,建立全国自然保护区生态系统结构数据集,同时做成多种尺度的栅格数据,其中包…

RK3568平台开发系列讲解(SPI篇)SPI数据的传输

🚀返回专栏总目录 文章目录 一、数据结构1.1、spi_transfer 结构体1.2、spi_message二、数据发送程序分析沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 参考资料: spi_transferspi_message一、数据结构 spi 数据传输主要使用了 spi_message 和 spi_transfer 结构…

鸿蒙OpenHarmony:【关于deps、external_deps的使用】

关于deps、external_deps的使用 在添加一个模块的时候,需要在BUILD.gn中声明它的依赖,为了便于后续处理部件间依赖关系,我们将依赖分为两种——部件内依赖deps和部件间依赖external_deps。 依赖分类 开发前请熟悉鸿蒙开发指导文档&#xff…

查看Linux系统是Ubuntu还是CentOS

要查看Linux系统是Ubuntu还是CentOS,可以通过多种方式进行确认: 查看/etc/os-release文件: 在终端中执行以下命令: cat /etc/os-release 如果输出中包含"IDubuntu",则表示系统是Ubuntu;如果输出中…

voceChat - 支持独立部署的个人云社交媒体聊天服务(使用场景及体验分享)

序言 在工作室的发展中,我们急需一个更加简单便捷,高效,适用于团队内部交流的组织平台。起因是我们团队一直是直接使用QQ进行活动,发现QQ很多功能不是很方便并且过于臃肿,越来越不契合工作室的生产环境,于…

pytorch 2.0 多线程并行,导致GPU利用100%,卡住

背景: 程序中有pytorch模型两个,yolov5,crnn。 之前无论是pth格式,还是TRT格式,并行的都没有问题。 最近发现,多线程ThreadPoolExecutor(max_workers2)调用的时候,即单个进程内处理一张图像&a…

数据可视化训练第7天(json文件读取国家人口数据,找出前10和后10)

数据 https://restcountries.com/v3.1/all;建议下载下来,并不是很大 import numpy as np import matplotlib.pyplot as plt import requests import json #由于访问url过于慢;将数据下载到本地是json数据 #urlhttps://restcountries.com/v3…

Unity Pixels Per Unit 与 Sprite Renderer Scale的逻辑关系,为什么平铺的Sprite Renderer会变形?

SpriteRenderer之前用的比较基础,没遇到过什么问题,这几天使用SpriteRenderer的平铺时发现平铺变形了,研究了一下,原来有这么多在逻辑在里面。 当我们导入图片选择Texture Type为Sprite时表示我们的图片用途是UI或者SpriteRendere…

风电功率预测 | 基于RF随机森林的风电功率预测(附matlab完整源码)

风电功率预测 风电功率预测完整代码风电功率预测 基于随机森林(Random Forest, RF)的风电功率预测是一种常用且有效的方法。以下是基于RF的风电功率预测的一般步骤: 数据准备:收集与风电场发电功率相关的数据,包括风速、风向、温度、湿度等气象数据以及风电场的历史功率数…

手机触控面板中应用的电容式触摸芯片

手机触控屏(Touch panel)又称为触控面板,是个可接收触头等输入讯号的感应式液晶显示装置,当接触了屏幕上的图形按钮时,屏幕上的触觉反馈系统可根据预先编程的程式驱动各种连结装置,可用以取代机械式的按钮面…

生产消费者模型-环形队列与信号量

文章目录 前言一、怎样的环形队列?二、什么是信号量三、使用步骤信号量的接口函数1. sem_init2.sem_destroy3.sem_wait4.sem_post 环形队列的设计测试用例 前言 之前我们使用互斥锁和条件变量实现过一个生产者消费者模型,那么那个生产消费者模型具有一个…

YOLOv9改进策略 | 低照度图像篇 | 2024最新改进CPA-Enhancer链式思考网络(适用低照度、图像去雾、雨天、雪天)

一、本文介绍 本文给大家带来的2024.3月份最新改进机制,由CPA-Enhancer: Chain-of-Thought Prompted Adaptive Enhancer for Object Detection under Unknown Degradations论文提出的CPA-Enhancer链式思考网络,CPA-Enhancer通过引入链式思考提示机制&am…