RT-DETR原创改进|加入SCNet中的SCConv[CVPR2020]自校准卷积模块!


⭐⭐ RT-DETR改进专栏|包含主干、模块、注意力机制、检测头等前沿创新 ⭐⭐


 一、 论文介绍

        论文链接:http://mftp.mmcheng.net/Papers/20cvprSCNet.pdf

        代码链接:https://gitcode.com/MCG-NKU/SCNet/

 文章摘要:

        CNN的最新进展主要致力于设计更复杂的架构来增强其表示学习能力。在本文中,我们考虑在不调整模型架构的情况下改进CNN的基本卷积特征转换过程。为此,我们提出了一种新的自校准卷积,通过内部通信显式扩展每个卷积层的视场,从而丰富输出特征。特别是,与使用小核(例如3 × 3)融合空间和通道信息的标准卷积不同,我们的自校准卷积通过一种新的自校准操作,自适应地在每个空间位置周围构建远程空间和通道间依赖关系。因此,它可以通过显式地结合更丰富的信息来帮助CNN生成更具判别性的表示。我们的自校准卷积设计简单而通用,可以很容易地应用于增加标准卷积层,而无需引入额外的参数和复杂性。大量的实验表明,当将我们的自校准卷积应用于不同的主干时,基线模型可以在各种视觉任务中得到显着改进,包括图像识别,目标检测,实例分割和关键点检测,而无需改变网络架构。我们希望这项工作可以为未来的研究提供一种有前途的方法来设计新的卷积特征变换,以改进卷积网络。

总结:作者设计了一个即插即用的自校准卷积模块来替代普通的卷积块,称为SC模块(Self-Calibrated Convolutions), 感受野更大,可以关注到更多的上下文信息;使用方便,可以像普通卷积模块一样使用,不需要引入多余参数,适用于多种任务。


二、 加入到RT-DETR中

2.1 复制代码

        复制代码粘到ultralytics->nn->modules->conv.py文件中,在顶部导入torch.nn.functional包,(torch.nn.functional as F),将代码粘贴于下方,并在__all__中声明,如下图所示:

import torch.nn.functional as F

__all__ = (
    "Conv",
    "Conv2",
    "LightConv",
    "DWConv",
    "DWConvTranspose2d",
    "ConvTranspose",
    "Focus",
    "GhostConv",
    "ChannelAttention",
    "SpatialAttention",
    "CBAM",
    "Concat",
    "RepConv",
    "SCConv",
)


class SCConv(nn.Module):
    def __init__(self, inplanes, planes, stride, padding, dilation, groups, pooling_r, norm_layer):
        super(SCConv, self).__init__()
        self.k2 = nn.Sequential(
                    nn.AvgPool2d(kernel_size=pooling_r, stride=pooling_r),
                    nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,
                                padding=padding, dilation=dilation,
                                groups=groups, bias=False),
                    eval(norm_layer)(planes),
                    )
        self.k3 = nn.Sequential(
                    nn.Conv2d(inplanes, planes, kernel_size=3, stride=1,
                                padding=padding, dilation=dilation,
                                groups=groups, bias=False),
                    eval(norm_layer)(planes),
                    )
        self.k4 = nn.Sequential(
                    nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride,
                                padding=padding, dilation=dilation,
                                groups=groups, bias=False),
                    eval(norm_layer)(planes),
                    )

    def forward(self, x):
        identity = x

        out = torch.sigmoid(torch.add(identity, F.interpolate(self.k2(x), identity.size()[2:]))) # sigmoid(identity + k2)
        out = torch.mul(self.k3(x), out) # k3 * sigmoid(identity + k2)
        out = self.k4(out) # k4

        return out

2.2 更改modules.__init__.py文件 

       打开ultralytics->nn->modules->__init__.py,在第64行与81行加入SCConv进行声明。

2.3 更改task.py文件 

        打开ultralytics->nn路径下的tasks.py文件,首先在第51行加入SCConv导入模块,然后在第928行(或其他合适的位置)加入下方代码:

   elif m is SCConv:
            c2 = args[0]
            c1 = ch[f]
            args = [c1, c2, *args[1:]]

 2.4 更改yaml文件 

        创建yaml文件,使用SCConv替换yaml文件中原有的Conv模块。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, SCConv, [256, 1, 1, 1, 1, 4, 'nn.BatchNorm2d']] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

 2.5 修改train.py文件

        在train.py脚本中填入创建好的yaml路径,运行即可训练。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/625407.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

2024年3月 电子学会 青少年等级考试机器人理论真题五级

202403 青少年等级考试机器人理论真题五级 第 1 题 下图程序运行后,串口监视器显示的结果是?( ) A:0 B:1 C:3 D:4 第 2 题 下列选项中,关于74HC595移位寄存器芯片的…

更高效的数据交互实现丨 DolphinDB Arrow 插件使用教程

Apache Arrow 是一种跨语言的内存数据交换格式,旨在为用户提供高效的数据结构,以实现在不同的数据处理系统之间共享数据而无需进行复制。它由 Apache 软件基金会开发和维护,目前已经成为许多大型数据处理和分析框架的核心组件之一。在分布式框…

【解决】Unity Build 应用程序运行即崩溃问题

开发平台:Unity 2021.3.7f1c1   一、问题描述 编辑器 Build 工程结束,但控制台 未显示 Build completed with a result of Succeeded [时间长度] 信息。该情况下打包流程正常,但应用程序包打开即崩溃。   二、问题测试记录 测试1&#xf…

vulhub靶机struts2环境下的s2-032(CVE-2016-3081)(远程命令执行漏洞)

影响范围 Struts 2.3.19至2.3.20.2、2.3.21至2.3.24.1和2.3.25至2.3.28 当用户提交表单数据并验证失败时,后端会将用户之前提交的参数值使用OGNL表达式%{value}进行解析,然后重新填充到对应的表单数据中。 漏洞搭建 没有特殊要求,请看 (3…

为什么cca门限和tx 功率有关系

Cca是用来决定信道是否繁忙,好像只和收有关。 但是为什么和tx有关。 设想一下这个网路布局。 如果某个STA在决定是否发送的时候,是否不能只看收到的干扰多大,还应该“冒险”一下,如果自己的功率足够,那么就可以扛住干…

网络库-POCO介绍

1.简介 POCO C Libraries 提供一套 C 的类库用以开发基于网络的可移植的应用程序,它提供了许多模块,包括网络编程、文件系统访问、线程和并发、数据库访问、XML处理、配置管理、日志记录等功能。Poco库的设计目标是易于使用、高度可定制和可扩展。 包含…

jupyter notebook中调整图片大小

截屏 ctrl V 这个目前只能保证是截屏大小&#xff0c;改变不了&#xff0c;要么之久 把图形缩小后再截图 感觉很模糊 png文件导入 markdown 代码1 <img src"./1.png" width250 height200>markdown 代码2 <img src"./1.png" width938 height…

【Transformer-BEV编码(10)】CVPR2021 PYVA 第一个明确提到 cross-attention decoder可用于视图转BEV

论文信息 论文名&#xff1a;Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation 中文&#xff1a;通过交叉视图变换&#xff08;crossview transform module&#xff09;估计单目道路场景布局 数据集&#xff1a;KITT…

【小积累】@Qualifier注解

今天在看rabbitMQ的时候需要绑定交换机和队列&#xff0c;交换机和队列都已经注入到spring容器中&#xff0c;写了一个配置类&#xff0c;使用了bean注解注入的。所以这时候绑定的时候需要使用容器中的交换机和队列&#xff0c;必须要使用Qualifier去确定是容器中的哪个bean对象…

【架构-17】通信系统架构设计理论

通信系统网络架构 1. 局域网网络架构 拓扑结构&#xff1a;星型、总线型、环型、树型。 网络架构&#xff1a;单核心架构&#xff08;结构简单&#xff0c;地理范围受限&#xff09;、双核心架构&#xff08;网络拓扑结构可靠&#xff0c;投资较单核高&#xff09;、环型架构…

《机器学习by周志华》学习笔记-决策树-01

本书中的「决策树」有时指学习方法,有时指学得的树。 1、基本流程 1.1、概念 基本流程,亦称「判定树」 决策树(decision tree),是一种常见的机器学习方法。以二分类任务为例,我们希望从给定训练数据集学得一个模型,用以对新样例进行分离。 以二分类任务为例,可看作对…

Vue3组件库开发项目实战——03封装Button组件/输出vitePress文档

Vue3组件库开发项目实战——01组件开发必备知识导学-CSDN博客 Vue3组件库开发项目实战——02项目搭建&#xff08;配置Eslint/Prettier/Sass/Tailwind CSS/VitePress/Vitest&#xff09;-CSDN博客 在前面两篇博客中&#xff0c;我分别介绍了组件库开发必学知识&#xff0c;以及…

什么是ThreadLocal

1. 什么是ThreadLocal ThreadLocal 为每一个线程提供独立的局部变量&#xff0c;每个线程都拥有该变量的一个独立副本。 每个Thread里面都有一个ThrealLocal.ThreadLocalMap结构&#xff0c;里面由Entry数组组成。key是ThrealLocal&#xff0c;value是我们存的Object&#xff…

定期更新与维护:技术与生活的同步律动

在这个数字化时代&#xff0c;科技的温暖之光照进了盲人朋友们的日常生活中&#xff0c;特别是那些辅助出行的应用程序&#xff0c;它们如同贴心的向导&#xff0c;引领着用户穿越城市的喧嚣与宁静。然而&#xff0c;要确保这些应用始终能够高效、安全地服务于盲人用户&#xf…

人工智能与机器学习的演进:重塑IT行业的未来

目录 前言一、人工智能与机器学习的最新发展1、算法和硬件的进步2、AI & ML的民主化 二、AI & ML在自动化中的应用1、工业与服务业自动化1.1 实践方式1.2 伪代码样例 2、软件开发与运维自动化2.1实践方式2.2伪代码样例 三、AI & ML在个性化服务中的应用1、推荐系统…

node和npm版本太高导致项目无法正常安装依赖以及正常运行的解决办法:如何使用nvm对node和npm版本进行切换和管理

1&#xff0c;点击下载 nvm 并且安装 进入nvm的github&#xff1a; GitHub - coreybutler/nvm-windows: A node.js version management utility for Windows. Ironically written in Go. 这里下载发行版&#xff0c;Releases coreybutler/nvm-windows GitHub 找到 这个 nv…

React useEffect Hook: 理解和解决组件双重渲染问题

在React中&#xff0c;useEffect可能会在组件的每次渲染后运行&#xff0c;这取决于它的依赖项。如果你发现useEffect运行了两次&#xff0c;并且你正在使用React 18或更高版本的严格模式&#xff08;Strict Mode&#xff09;&#xff0c;这可能是因为在开发模式下&#xff0c;…

ros大车学习2024.3.28-2024.5.14小结(1)

ros一键安装推荐wget http://fishros.com/install -O fishros && . fishros (原本的资料的是melodic的&#xff0c;因为资料里面的镜像是ubuntu18.04的&#xff0c;而我用的是鲁班猫sk3566,ubuntu20.04&#xff0c;镜像来源于野火官网)首先获取新noetic源码2024.5.13从…

【YOLOV5 入门】——Gradio搭建Web GUI

引入&#xff1a;上节搭建的UI可视化界面只能以运行程序弹出窗口的形式运行&#xff0c;不能在网页Web中使用&#xff0c;本次代码将会非常少&#xff01; 一、Gradio简介与安装 Gradio 是一个用于构建机器学习模型演示界面和Web应用的开源库。提供了简单易用的界面&#xff0…

小红书自动私信获客,打造个人品牌

在当今这个内容为王、社交至上的时代&#xff0c;小红书作为新兴的社交电商平台&#xff0c;凭借其独特的社区氛围和强大的种草能力&#xff0c;成为了众多KOL、商家以及个人品牌打造的首选平台。想要在小红书上脱颖而出&#xff0c;精准引流获客&#xff0c;利用自动私信功能不…