【深度学习目标检测】二十六、基于深度学习的垃圾检测系统-含数据集、GUI和源码(python,yolov8)

设计垃圾检测系统的意义在于多个方面,这些方面不仅关乎环境保护和城市管理,还涉及到技术进步和社会效益。以下是设计垃圾检测系统的主要意义:

  1. 环境保护与资源回收:
    • 垃圾检测系统能够有效地识别不同种类的垃圾,帮助人们进行准确的分类投放。这有助于减少污染,降低对环境的负面影响。
    • 通过智能识别技术,系统能够自动筛选出可回收物,提高资源回收率,减少资源浪费。
  2. 城市管理与卫生改善:
    • 垃圾检测系统有助于城市管理部门更好地监控和管理城市垃圾,提高城市清洁度和卫生水平。
    • 通过实时监控和数据分析,系统能够及时发现并解决垃圾处理过程中的问题,提高城市管理的效率和水平。
  3. 提高公众环保意识:
    • 垃圾检测系统可以作为一种教育工具,提高公众对垃圾分类和环保的认识和重视程度。
    • 通过直观的展示和反馈,系统能够引导公众形成正确的垃圾分类习惯,推动环保理念的普及和实践。
  4. 技术创新与应用:
    • 垃圾检测系统的设计和实现涉及多个技术领域,如计算机视觉、传感器技术、人工智能等。这有助于推动相关技术的创新和发展。
    • 系统的应用可以为其他领域提供借鉴和参考,推动技术进步和应用拓展。
  5. 经济效益与社会效益:
    • 垃圾检测系统的应用可以降低垃圾处理成本,提高资源回收效率,从而产生经济效益。
    • 同时,系统还能够改善城市环境,提高居民生活质量,产生显著的社会效益。
  6. 应对垃圾处理挑战:
    • 随着城市化进程的加速和人口的增长,垃圾处理面临着越来越大的挑战。垃圾检测系统作为一种有效的解决方案,能够帮助我们更好地应对这些挑战。
  7. 政策支持与法规推动:
    • 越来越多的国家和地区开始重视垃圾分类和环保问题,并出台相关政策和法规来推动垃圾处理工作的改进。垃圾检测系统的设计和应用符合这些政策和法规的要求,有助于推动相关工作的顺利进行。

综上所述,设计垃圾检测系统具有重要意义,不仅有助于环境保护和资源回收,还能提高城市管理和卫生水平,推动技术创新和应用拓展,产生经济效益和社会效益。同时,系统还能够应对垃圾处理挑战并符合政策和法规的要求。

本文介绍了基于深度学习yolov8的行人检测计数系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。

模型在线体验:模型乐园

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

本文数据集来自https://aistudio.baidu.com/datasetdetail/101886/0,垃圾类别为5类:paper、cup、citrus、bottle、battery,经过处理后的数据集包含:训练集1191个数据,验证集298个数据。

示例图片如下:

本文提供转换好的数据集,可以直接用于训练yolo模型:5类垃圾分类yolov8格式数据集,该数据集包含五个类别:paper、cup、citrus、bottle、battery

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件rubbish.yaml,内容如下(将path路径替换为自己的数据集路径):


 
# 数据集来源;https://tianchi.aliyun.com/dataset/93609
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\rubish_det\rubbish_yolov8 # 替换为自己的数据集路径
train: images/train 
val: images/val 
test: images/val  
 
# Classes
names:
  # 0: normal
  0: paper
  1: cup
  2: citrus
  3: bottle
  4: battery

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo detect train project=rubbish name=train exist_ok data=rubbish.yaml model=yolov8n.yaml epochs=100 imgsz=640

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val project=rubbish name=val imgsz=640 model=rubbish/train/weights/best.pt data=rubbish.yaml
# Ultralytics YOLOv8.1.20 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
# YOLOv8n summary (fused): 168 layers, 3006623 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning D:\DeepLearning\datasets\csdn\rubish_det\rubbish_yolov8\labels\val.cache... 298 images, 0 backgrounds, 0 corrupt: 100%|██████████| 298/298 [00:00<?, ?it/s]
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 19/19 [00:02<00:00,  7.50it/s]
#                    all        298        638      0.951      0.934      0.967      0.762
#                  paper        298         74      0.976      0.973      0.993      0.853
#                    cup        298        107       0.96      0.916      0.968        0.8
#                 citrus        298        119      0.975      0.972      0.994      0.799
#                 bottle        298        107      0.883      0.847      0.894      0.586
#                battery        298        231       0.96      0.961      0.988      0.774
# Speed: 1.3ms preprocess, 3.9ms inference, 0.0ms loss, 0.9ms postprocess per image
# Results saved to rubbish\val2
# 💡 Learn more at https://docs.ultralytics.com/modes/val

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO
 
# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')
 
image_path = 'test.jpg'
results = model(image_path)  # 结果列表
 
# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的垃圾检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,可检测5类垃圾

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/621892.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据可视化(十二):Pandas太阳黑子数据、图像处理——离散极值、核密度、拟合曲线、奇异值分解等高级操作

Tips&#xff1a;"分享是快乐的源泉&#x1f4a7;&#xff0c;在我的博客里&#xff0c;不仅有知识的海洋&#x1f30a;&#xff0c;还有满满的正能量加持&#x1f4aa;&#xff0c;快来和我一起分享这份快乐吧&#x1f60a;&#xff01; 喜欢我的博客的话&#xff0c;记得…

【JS红宝书学习笔记】第1、2章 初识JS

第1章 什么是JavaScript JavaScript 是一门用来与网页交互的脚本语言&#xff0c;包含以下三个组成部分。 ECMAScript&#xff1a;由 ECMA-262 定义并提供核心功能。文档对象模型&#xff08;DOM&#xff09;&#xff1a;提供与网页内容交互的方法和接口。浏览器对象模型&…

LeetCode 98. 验证二叉搜索树

LeetCode 98. 验证二叉搜索树 1、题目 题目链接&#xff1a;98. 验证二叉搜索树 给你一个二叉树的根节点 root &#xff0c;判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下&#xff1a; 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节…

使用apache和htaccess对目录访问设置密码保护配置教程

对目录设置密码保护配置说明 我们有时候访问某些网站的时候&#xff0c;要求输入用户名和密码才能访问。这是为了保护隐私&#xff0c;只让经过许可的人访问。 在本教程中主要介绍两种方法&#xff0c;一种是通过apache httpd.conf配置文件对管理后台目录设置密码保护&#xff…

LeetCode 700.二叉搜索树中的搜索

LeetCode 700.二叉搜索树中的搜索 1、题目 题目链接&#xff1a;700. 二叉搜索树中的搜索 给定二叉搜索树&#xff08;BST&#xff09;的根节点 root 和一个整数值 val。 你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在&#xff0c;则…

Docker入门指南:Docker容器的使用(三)

&#x1f340; 前言 博客地址&#xff1a; CSDN&#xff1a;https://blog.csdn.net/powerbiubiu &#x1f44b; 简介 在本章节中&#xff0c;将深入探讨 Docker 容器的概念&#xff0c;以及容器的使用。 &#x1f4d6; 正文 1 什么是容器 1.1 Docker容器的介绍 Docker 容…

使用Gin编写Web API项目并自动化文档

最近需要使用Go写一个Web API项目&#xff0c;可以使用Beego与Gin来写此类项目&#xff0c;前文使用Beego创建API项目并自动化文档介绍了使用Beego来创建的Web API项目并自动化文档的方法。本文就介绍一下使用Gin来编写Web API项目并自动化文档。 一、创建项目 在创建Beego项…

栈与队列OJ题【括号适配问题】【用队列实现栈】【用栈实现队列】【设计循环队列】

一.有效的括号 ​​​OJ链接 这一道题我们就可以用栈来解决&#xff1a; 不了解栈的可以看我的上一篇博客。 typedef char STDataType; //用数组来实现栈 typedef struct stack {STDataType* a;int capacity;int top; }ST; void STInit(ST* pst) {assert(pst);pst->a NU…

基于SSM的理发店会员管理系统的设计和实现(有报告)。Javaee项目。ssm项目。

演示视频&#xff1a; 基于SSM的理发店会员管理系统的设计和实现&#xff08;有报告&#xff09;。Javaee项目。ssm项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&#xff0…

泛微E9开发 添加多个多选框,实现单选框的效果

利用多个多选框实现单选框的效果 1、功能背景2、展示效果3、实现效果 1、功能背景 如下图所示&#xff0c;在表单中新增四个“选择框-复选框”类型的字段&#xff0c;并且设置其中的选项&#xff0c;每个多选框都只有一个选项&#xff0c;通过代码块实现单选框的效果 1.显示模…

ICode国际青少年编程竞赛- Python-5级训练场-综合练习7

ICode国际青少年编程竞赛- Python-5级训练场-综合练习7 1、 for i in range(6):while not Flyer[i].disappear():wait()Spaceship.step(2 2 * i)Spaceship.turnRight()2、 def get(a, b, c, d):for i in (a, b, c, d):Dev.step(i)if i ! 0:Dev.turnRight() get(3, 3, 5, -4)…

【CSP CCF记录】202206-2 寻宝!大冒险!

题目 过程 思路 1.绿化图坐标边界太大&#xff0c;不能直接用矩阵表示&#xff0c;可以用一个二维数组存储有树坐标的x,y值。 定义两个数组&#xff1a;绿化图arr[1005][2]、宝藏图数组b[55][55] 2. 依据条件&#xff0c;从绿化图中第一棵树的坐标开始区域遍历。统计绿化图…

spring cloud微服务example 入门第一个例子

新建Maven工程 删除src目录&#xff0c;修改poml.xml <modelVersion>4.0.0</modelVersion><groupId>org.example</groupId> <artifactId>SpringCloud_example</artifactId> <version>1.0-SNAPSHOT</version> <packaging&g…

物联网五层架构分析

物联网五层架构分析 随着科技的迅速发展&#xff0c;物联网&#xff08;IoT&#xff09;作为日常生活中不可或缺的一部分&#xff0c;已融入人们的生活和工作中。物联网五层架构&#xff0c;包括感知层、网络层、数据层、应用层和业务层&#xff0c;扮演着关键的角色。 感知层 …

WIFI模块的AT指令联网数据交互--第十天

1.1.蓝牙&#xff0c;ESP-01s&#xff0c;Zigbee, NB-Iot等通信模块都是基于AT指令的设计 初始配置和验证 ESP-01s出厂波特率正常是115200, 注意&#xff1a;AT指令&#xff0c;控制类都要加回车&#xff0c;数据传输时不加回车 1.2.上电后&#xff0c;通过串口输出一串系统…

【运维】如何安装ubuntu-24.04? 如何分区?

如何安装ubuntu-24.04&#xff1f;如何分区 经过一系列折腾&#xff0c;我总结了这几点&#xff1a; &#xff08;1&#xff09;在BIOS启动设置里&#xff0c;如果是GPT的硬盘格式&#xff0c;那么对应的就是UEFI的启动方式&#xff1b;如果是MBR的硬盘格式&#xff0c;那么对…

【Spring】GoF 之代理模式

一、代理模式 在 Java 程序中的代理模式的作用&#xff1a; 当一个对象需要受到保护的时候&#xff0c;可以考虑使用代理对象去完成某个行为 需要给某个对象的功能进行功能增强的时候&#xff0c;可以考虑找一个代理进行增强 A 对象无法和 B 对象直接交互时&#xff0c;也可以…

C# 使用Queue高效检索树行数据符合条件的数据,并返回完整树形数据示例

最近有项目需要加载大型树数据&#xff0c;数据大概3W条 后端使用C# NET6 前端使用Vue3 elementuiplus 虚拟tree 》解决大型树数据加载 遇到的问题是后端在检索数据时&#xff0c;要返回匹配数据的完整树目录 1.因为单条数据没有存放完整路径&#xff0c;需要通过父级ID逐…

【ARM Cortex-M 系列 2.1 -- Cortex-M7 Debug system registers】

请阅读【嵌入式开发学习必备专栏】 文章目录 Debug system registers中断控制状态寄存器&#xff08;ICSR&#xff09;Debug Halting Control and Status Register, DHCSR Debug 寄存器DCRSR与DCRDRCPU 寄存器读操作CPU 寄存器写操作CPU 寄存器选择CPU 寄存器读写示例 调试故障…

Ubuntu安装VScode

Ubuntu安装VScode 前言&#xff1a; 1、Ubuntu安装VScode比较方便 2、我更喜欢source insight 1、获取到linux版本的VScode安装包 VSCode 下载地址是&#xff1a;https://code.visualstudio.com/ 2、得到安装包 3、复制到ubuntu中&#xff0c;使用命令安装 sudo dpkg -i cod…